Hospitalized patients in internal medicine have an increased risk of low physical reserve which further declines during the hospital stay. The diagnosis requires bed-side testing of functional domains or more complex investigations of the muscle mass. Clinically useful biomarkers of functional status are needed, thus we aimed to explore the potential of microRNAs. Among hospitalized patients, we recorded the basic demographics, anthropometrics, nutritional status, and physical function domains: hand-grip strength (HGS, abnormal values M<30 kg, W<20 kg), balance (<30 s), chair-stands speed (CHSS<0.5/s) and gait speed (GS<0.8 m/s). A panel of five micro-RNAs (miRNA 1, miRNA 133a, miRNA 133b, miRNA 29a, miRNA 29b) and basic blood biochemistry and vitamin D values were recorded. We enrolled 80 patients (M40, W40), with a mean age of 68.8± 8.4 years. Obesity was observed in 27.5 % and 30 %, low HGS and low CHSS in 65.0, 77.5 %, and 80, 90 % of men and women respectively. The median hospital stay was 6.5 days. MiRNA29a and miRNA29b have the strongest correlation with the triceps skinfold (miRNA 29b, r=0.377, p=0.0006) and CHSS (miRNA 29a, r=0.262, p=0.02). MiRNA 29a, miRNA 29b and 133a levels were significantly higher in patients with CHSS<0.5/s. Other anthropometric parameters, mobility domains, or vitamin D did not correlate. All miRNAs except of miRNA 1, could predict low CHSS (miRNA29b, AUROC=0.736 CI 0.56-0.91, p=0.01), particularly in patients with low HGS (miRNA 29b, AUROC=0.928 CI 0.83-0.98). Among hospitalized patients in internal medicine, low functional status was frequent. MicroRNAs were fair biomarkers of the antigravity domain, but not other domains. Larger studies with clinical endpoints are needed., Petra Vrbová, Simona Valášková, Andrea Gažová, Juraj Smaha, Martin Kužma, Ján Kyselovič, Juraj Payer, Tomáš Koller., and Obsahuje bibliografii
Hypoxic-ischemic encephalopathy (HIE) is one of the leading pediatric neurological conditions causing long-term disabilities and socio-economical burdens. Nearly 20-50 % of asphyxiated newborns with HIE die within the newborn period and another third will develop severe health consequences and permanent handicaps. HIE is the result of severe systemic oxygen deprivation and reduced cerebral blood flow, commonly occurring in full-term infants. Hypoxic-ischemic changes trigger several molecular and cellular processes leading to cell death and
inflammation. Generated reactive oxygen species attack surrounding cellular components resulting in functional deficits and mitochondrial dysfunction. The aim of the present paper is to review present knowledge about the pathophysiology of perinatal hypoxic-ischemic encephalopathy, especially with respect to novel treatment strategies and biomarkers that might enhance early detection of this disorder and thus improve the general outcome of patients.
a1_Sarcopenia is defined as an age-associated loss of skeletal muscle function and muscle mass and is common in older adults. Sarcopenia as a disease is currently of interest not only to orthopedists and surgeons but also to internists, endocrinologists, rheumatologists, cardiologists, diabetologists, gynaecologists, geriatricians and paediatricians. In cooperation with the 5th Internal Medicine Clinic, we, as a unit of clinical research, aimed to describe a sarcopenic specific miRNA expression profile for disease diagnostics and classification of the severity of muscle performance deterioration. This study included a total of 80 patients (age 55-86 years) hospitalized at the V. Internal medicine clinic of LFUK and UNB with different severity of muscle performance deterioration. The study participants were evaluated and classified according to short physical performance battery score (SPPB). In this study, we investigated the role of circulating miRNAs in sarcopenia in the elderly. We hypothesized that sarcopenia effects the expression of muscle tissue-specific miRNAs (MyomiRNAs), which could be potentially reflected in the blood plasma miRNA expression profile. The expression of specific circulating miRNAs in patients with different muscle performances was analyzed. Patients’ blood plasma was evaluated for the expression of myomiRNAs: miRNA-29a, miRNA-29b, miRNA-1, miRNA-133a, miRNA-133b, miRNA-206, miRNA-208b and miRNA-499, and the data were correlated with diagnostic indicators of the disease. We showed a specific sarcopenia miRNA profile that could be considered a possible biomarker for the disease. Patients with low muscle performance showed increased miRNA-1, miRNA-29a and miRNA-29b expression and decreased for the miRNA-206, miRNA-133a, miRNA-133b, miRNA-208b and miRNA-499 expression., a2_ We show that the severity of muscle performance deterioration in sarcopenia correlates with specific miRNA expression. We also propose the profile of miRNAs expression in blood plasma as a specific biomarker for sarcopenia diagnostics. Future clinical studies will be necessary to eventually naturally have to elucidate the underlined molecular mechanism responsible for specific miRNAs expression in sarcopenia pathology and progression of the disease., Simona Valášková, Andrea Gažová, Petra Vrbová, Tomáš Koller, Barbara Šalingova, Adriana Adamičková, Nikola Chomaničová, Nikoleta Hulajová, Juraj Payer, Ján Kyselovič., and Obsahuje bibliografii