The aim of our work was to evaluate peripheral blood lymphocyte subsets as
in vitro indicators of the received dose of ionizing radiation (biodosimetric markers) in the range of 3-20 Gy and to determine the appropriate time interval, during which a dose-dependent induction of apoptosis occurs upon γ irradiation. In lymphocyte subsets characterized by double color surface immunophenotyping, four-color flow cytometry was used for visualizing cell death-associated increase in superficial phosphatidylserine exposure and cytoplasmic membrane permeability by fluorinated Annexin V
and propidium iodide, respectively. No differences between sham-treated and lethal dose (7 Gy)-irradiated samples were observed upon 6 h cultivation in vitro. Ten and 18 h later, about 50 % of lymphocytes were apoptotic, but only the minority of them was in the late apoptotic phase. The only difference in radioresistance of the CD4+CD8- and CD4-CD8
+ lymphocyte subsets was seen upon 2-day cultivation when huge depletion of intact cells and prevalence of the late apoptotic population became obvious. A dose-dependence study in 16 and 48 h cultures confirmed the effectiveness of major T cell subsets as biodosimetric indicators. On the other hand, the minor CD8+ subset of natural killer (NK) cells has been identified as a radiosensitive lymphocyte population the disappearance of which correlated with the received dose. We demonstrated that the CD3
-CD8+ NK subset can be used as a lethal/sublethal dose discriminator to 16 h cultivation. In addition, our data indicate that two-day cultivation followed by CD3/CD8 expression analysis in an intact lymphocyte population may provide a clue for low dosage biodosimetry.