Skeletal muscle atrophy is associated with a loss of muscle protein which may result from both increased proteolysis and decreased protein synthesis. Investigations on cell signaling pathways that regulate muscle atrophy have promoted our understanding of this complicated process. Emerging evidence implicates that calpains play key roles in dysregulation of proteolysis seen in muscle atrophy. Moreover, studies have also shown that abnormally activated calpain
results muscle atrophy via its downstream effects on ubiquitin proteasome pathway (UPP) and Akt phosphorylation. This review will discuss the role of calpains in regulation of skeletal muscle atrophy mainly focusing on its collaboration with either UPP or Akt in atrophy
conditions in hope to stimulate the interest in development of novel therapeutic interventions for skeletal muscle atrophy.