In this article, we deal with a numerical solution of the issue concerning one-dimensional longitudinal mechanical wave propagation in linear elastic neural weakly heterogeneous media. The crucial idea is based on the discretization of the wave equation with the aid of a combination of the discontinuous Galerkin method for the space semi-discretization and the Crank-Nicolson scheme for the time discretization. The linearity of the second-order hyperbolic problem leads to a solution of a sequence of linear algebraic systems at each time level. The numerical experiments performed for the single traveling wave and Gauss initial impact demonstrate the high-resolution properties of the presented numerical scheme. Moreover, a well-known linear stress-strain relationship enables us to analyze a high-frequency regime for the initial excitation impact with respect to strain-frequency dependency.