This paper presents a neuro-based approach for annual transport energy demand forecasting by several socio-economic indicators. In order to analyze the influence of economic and social indicators on the transport energy demand, gross domestic product (GDP), population and total number of vehicles are selected. This approach is structured as a hierarchical artificial neural networks (ANNs) model based on the supervised multi-layer perceptron (MLP), trained with the back-propagation (BP) algorithm. This hierarchical ANNs model is designed properly. The input variables are transport energy demand in the last year, GDP, population and total number of vehicles. The output variable is the energy demand of the transportation sector in Million Barrels Oil Equivalent (MBOE). This paper proposes a hierarchical artificial neural network by which the inputs to the ending level are obtained as outputs of the starting levels. Actual data of Iran from 1968-2007 is used to train the hierarchical ANNs and to illustrate capability of the approach in this regard. Comparison of the model predictions with conventional regression model predictions shows its superiority. Furthermore, the transport energy demand of Iran for the period of 2008 to 2020 is estimated.
Text categorization is based on the idea of content-based texts clustering. An Artificial Neural Network (ANN) or simply Neural Network (NN) classifier for Arabic texts categorization is proposed. The Singular Value Decomposition (SVD) is used as preprocessor with the aim of further reducing data in terms of both size and dimensionality. Indeed, the use of SVD makes data more amenable to classification and the convergence training process faster. Specifically, the effectiveness of the Multilayer Perceptron (MLP) and the Radial Basis Function (RBF) classifiers are implemented. Experiments are conducted using an in-house corpus of Arabic texts. Precision, recall and F-measure are used to quantify categorization effectiveness. The results show that the proposed SVD-Supported MLP/RBF ANN classifier is able to achieve high effectiveness. Experimental results also show that the MLP classifier outperforms the RBF classifier and that the SVD-supported NN classifier is better than the basic NN, as far as Arabic text categorization is concerned.
A robust prediction model is developed for reliably estimating vehicular consumption. This model is distinguished from other models proposed so far for the following reasons: it detects the factors contributing into vehicular consumption, it applies machine learning functionality for approximating the nonlinearities and the specificities between the contributing factors, and it is capable of implicitly adapting to the characteristics of the vehicle, the road network and the contextual conditions through its learning process. The authors validated its efficiency by applying it on measurements collected during a data acquisition campaign, which was performed by a fully electric vehicle (FEV) in an urban road network.
The article describes a neural network-based articulatory feature (AF) estimation for the Czech speech. First, the relationship between AFs and a Czech phone inventory is defined, and then the estimation based on the MLP neural networks is done. The usage of several speech representations on the input of the MLP classifiers is proposed with the purpose to obtain a robust AF estimation. The realized experiments have proved that an ANN- based AF estimation works very reliably especially in a low noise environment. Moreover, in case the number of neurons in a hidden layer is increased and if the temporal context DCT-TRAP features are used on the input of the MLP network, the AF classification works accurately also for the signals collected in the environments with a high background noise.