Within the zoological disciplines the study of mammalian hair has mostly been limited to crossspecies comparisons, but there is also considerable intraspecifi c variation in hair characteristics that may be biologically meaningful and deserving of study, though it can be tedious to manually measure hundreds of hairs under a microscope. Here a method is presented for assessing a variety of morphological characteristics of mammalian hairs that is fast, nearly fully-automated, does not require a microscope, and that could easily be used by wildlife biologists or researchers studying museum skins. Using hair samples from 6 captive white-tailed deer (Odocoileus virginianus) hairs were placed in groups of ten on white 3 x 5 inch index cards and covered with clear packing tape. Cards were scanned with a standard fl atbed scanner at high resolution (1200dpi) and the images imported into a computer image analysis program. The program automatically selected and measured each hair, relayed the data to a text fi le, and cycled through all images so that the 120 deer hairs examined (20 per animal) were all measured within 5 minutes. The data returned included the length of each hair (even if it was curly), the width (the average width of the entire shaft), the 2-dimensional surface area, as well as the colour of the hair, measured with hue and brightness scores averaged over the entire shaft. These data are well-suited for examining questions regarding factors infl uencing the morphology or colour of mammalian pelage, or for using hair morphology to assess the nutritional status of individuals, as is done with humans. When measurements are completed, cards can be conveniently stored, either in an index card box or ringed binder, and they can even be re-scanned (at higher resolutions, for example) if needed. Alternatively, the index card step could be skipped and hairs could be scanned loosely in batches. Either way, this method should allow zoological researchers to pursue a wide variety of questions relating to mammalian hair morphology.
White-tailed deer were introduced into the Czech Republic about one hundred years ago. Population numbers have remained stable at low density despite almost no harvesting. This differs from other introductions of this species in Europe. We presumed that one of the possible factors preventing expansion of the white-tailed deer population is lack of high-quality food components in an area overpopulated by sympatric roe, fallow and red deer. We analyzed the WTD winter diet and diets of the other deer species to get information on their feeding strategy during a critical period of a year. We focused primarily on conifer needle consumption, a generally accepted indicator of starvation and on bramble leaves as an indicator of high-quality items. We tested the following hypotheses: (1) If the environment has a limited food supply, the poorest competitors of the four deer species will have the highest proportion of conifer needles in the diet ; (2) the deer will overlap in trophic niches and will share limited nutritious resource (bramble). White-tailed, roe, fallow, and red deer diets were investigated by microscopic analysis of plant remains in their faeces. The volume of bramble decreased in the diet of all four deer species from November to March. The content of conifer needles in the diet of white-tailed and roe deer was negatively correlated with bramble and in spring made up 90 % of their diet volume. On the other hand conifer needles in the diet of red and fallow deer occurred only in January with snow cover. Fallow and red deer started the compensation of winter starvation at least one monthearlier than both roe and white-tailed deer. a high content of conifers in white-tailed deer diet in the second half of the winter fully support the presumption about low nutritional food supply and its diet. It can lead to a markedly impaired condition for white-tailed and roe deer and negatively affect their condition. The dietary overlap of four sympatric deer species was extensive in winter. All species share a limited good quality food supply (bramble) when food is scarce, suggesting that interspecific competition may occur.