Leptin is an adipocyte-derived hormone participating in the regulation of food intake and energy balance. Its secretion from fat cells is potentiated by insulin and by substrates providing ATP, whereas factors increasing cAMP level attenuate hormone release stimulated by insulin and glucose. The present experiments were aimed to determine the
effect of cAMP on leptin secretion stimulated by glucose, alanine or leucine in the presence of insulin. Moreover, the effect of protein kinase A inhibition on leptin secretion was tested. To stimulate leptin secretion, isolated rat adipocytes were incubated for 2 h in the buffer containing 5 mmol/l glucose, 10 mmol/l alanine or 10 mmol/l leucine, all in the presence of 10 nmol/l insulin. Inhibition of protein kinase A (PKA) by H-89 (50 μmol/l) slightly enhanced leptin release stimulated by glucose and leucine but not by alanine. Activation of this enzyme by dibutyryl-cAMP (1 mmol/l)
substantially restricted leptin secretion stimulated by glucose, alanine and leucine. The inhibitory influence of dibutyryl-cAMP on leptin secretion was totally (in the case of stimulation induced by glucose) or partially (in the case of stimulation by alanine and leucine) suppressed by H-89. These results demonstrate that leptin secretion induced by glucose, alanine and leucine is profoundly attenuated by cAMP in PKA-dependent manner. Therefore, the action of different stimulators of leptin secretion may be restricted by agents increasing the cAMP content in adipocytes. Moreover, it has also been shown that inhibition of PKA evokes the opposite effect and enhances leptin release.
Prenatal exposure to caffeine can cause developmental problems. This study determined chronic influence of prenatal caffeine at relatively higher doses on cognitive functions in the rat offspring. Pregnant Sprague-Dawley rats (4-month-old) were exposed to caffeine (20 mg/kg, twice a day) for whole pregnancy from gestational day 4. Fetal and offspring body and brain weight was measured. Learning and memory were tested in adult offspring with Morris water maze. Learning and memory-related receptors were measured. The exposure to prenatal caffeine not only caused fetal growth restriction, but also showed long-term effects on learning and memory in the offspring. The caffeine offspring exhibited longer escape latency and path length in navigation testing. The number of passing the target was significantly reduced in those offspring. The expression of adenosine A1 and A2A receptors, nuclear PKA Cα, Cβ subunits, and pCREB were significantly increased in the fetal and neonatal brain, and suppressed in the hippocampus of the adult offspring. The expression of BDNF and TrkB were reduced regardless of various ages. The results suggest that intrauterine programming dysfunction of adenosine receptors and the down-stream of cAMP/PKA/pCREB system may play an important role in prenatal caffeine induced cognition disorders in the adult offspring.