Peritoneal dialysis (PD) is a well established method of depuration in uremic patients. Standard dialysis solutions currently in use are not biocompatible with the peritoneal membrane. Studying effects of dialysate on peritoneal membrane in humans is still a challenge. There is no consensus on the ideal experimental model so far. We, therefore, wanted to develop a new experimental non-uremic rabbit model of peritoneal dialysis, which would be practical, easy to conduct, not too costly, and convenient to investigate the long-term effect of dialysis fluids. The study was done on 17 healthy Chinchilla male and female rabbits, anesthetized with Thiopental in a dose of 0.5 mg/kg body mass. A catheter, specially made from Tro-soluset (Troge Medical GMBH, Hamburg, Germany) infusion system, was then surgically inserted and tunneled from animals' abdomen to their neck. The planned experimental procedure was 4 weeks of peritoneal dialysate instillation. The presented non-uremic rabbit model of peritoneal dialysis is relatively inexpensive, does not require sophisticated technology and was well tolerated by the animals. Complications such as peritonitis, dialysis fluid leakage, constipation and catheter obstruction were negligible. This model is reproducible and can be used to analyze the effects of different dialysis solutions on the rabbit peritoneal membrane., S. Zunic-Bozinovski, Z. Lausevic, S. Krstic, N. Jovanovic, J. Trbojevic-Stankovic, B. Stojimirovic., and Obsahuje bibliografii a bibliografické odkazy
High plasma levels of triglycerides (TG) are an independent risk factor in the development of cardiovascular disease, with about 50 % of the final levels being determined genetically. Apolipoprotein A5 ( APOA5 ) is the last discovered member of the apolipoprotein APOA1/C3/A4 gene cluster, found by comparative sequencing analysis. The importance of APOA5 gene for determination of plasma triglyceride levels has been suggested after development of transgenic and knock-out mice (transgenic mice displayed significantly reduced TG, whereas knock-out mice had high TG). In Czech population, alleles C-1131 and Trp19 are associated with elevated levels of plasma TG and higher risk of myocardial infarction development. These alleles also play some role in nutrigenetics and actigenetics of lifestyle interventions leading to the plasma cholesterol changes as well as in the pharmacogenetics of statin treatment. On the contrary, APOA5 mutations detected in Czech population did not show strict effect on plasma TG levels. Val153 → Met variant exhibit the sex-specific effect of HDL-cholesterol levels. The suggested roles of APOA5 variants in determination of the plasma remnant particles, plasma concentrations of C-reactive protein or some anthropometrical parameters were excluded., J. A. Hubáček ... [et al.]., and Obsahuje seznam literatury
A predominance of small, dense low-density lipoproteins (LDL) is characteristic of the dyslipidemic state seen in type 2 diabetes. However, no study has investigated the association in gestational diabetes mellitus (GDM), which is pathophysiologically similar to type 2 diabetes. We hypothesized that LDL particle size is reduced in GDM cases compared with controls. Gradient gel electrophoresis was used to characterize LDL subclass phenotypes in non-fasting intrapartum plasma from 105 GDM cases and 96 controls. All participants were free of pre-existing diabetes or hypertension. The authors used logistic regression to estimate odds ratios (OR) and 95 % confidence intervals (CI) adjusted for confounders. Women with this phenotype had a significant 4.9-fold (95 % CI: 1.1-23.2) increased risk of GDM compared with those with the large, buoyant phenotype. The magnitude of this association was attenuated when plasma triglyceride and other confounders were included in the model (OR=4.2, 95 % CI: 0.5-39.5). Mean LDL particle size in GDM cases was smaller compared with controls (270.1 vs. 272.7Å, p=0.003). The OR of GDM risk was 1.8 (95 % CI: 0.9-3.3) for every 10-Å reduction in LDL particle size. Large prospective studies are needed to evaluate the association between smaller LDL particle size in early pregnancy with subsequent GDM risk., C. Qiu, C. Rudra, M. A. Austin, M. A. Williams., and Obsahuje bibliografii a bibliografické odkazy
Sympathetic activation and parasympathetic withdrawal are commonly observed during acute exacerbations of chronic obstructive pulmonary disease (COPD). We have demonstrated previously that noninvasive positive-pressure ventilation (NPPV) improves parasympathetic neural control of heart rate in patients with obstructive sleep apnea. We hypothesized that NPPV may exert such beneficial effects in COPD as well. Therefore, we assessed the acute effects of NPPV on systemic blood pressure and indexes of heart rate variability (HRV) in 23 patients with acute exacerbations of COPD. The measurements of HRV in the frequency domain were computed by an autoregressive spectral technique. The use of NPPV resulted in significant increases of oxygen saturation (from 89.2±1.0 to 92.4±0.9 %, p<0.001) in association with reductions in systolic and diastolic blood pressures and heart rate (from 147±3 to 138±3 mm Hg, from 86±2 to 81±2 mm Hg, from 85±3 to 75±2 bpm, p<0.001 for all variables), and increases in ln-transformed high frequency band of HRV (from 6.4±0.5 to 7.4±0.6 ms2/Hz, p<0.01). Reductions in heart rate and increases in ln-transformed HF band persisted after NP PV withdrawal. In conclusion, these findings suggest that NPPV may cause improvements in the neural control of heart rate in patients with acute exacerbations of COPD., P. Skyba, P. Joppa, M. Orolín, R. Tkáčová., and Obsahuje bibliografii a bibliografické odkazy
The gold standard material in bypass surgery of blood vessels remains the patient’s own artery or vein. However, this material may be unavailable, or may suffer vein graft disease. Currently available vascular prostheses, namely polyethylene terephthalate (PET, Dacron) and expanded poly tetrafluoroethylene (ePTFE), perform well as large-caliber replacements, but their long-term patency is discouraging in small-caliber applications (<6 mm), such as in coronary, crural or microvessel surgery. This failure is mainly a result of an unfavorable healing process with surface thrombogenicity, due to lack of endothelial cells and anastomotic intimal hyperplasia caused by hemodynamic disturbances. An ideal small-diameter vascular graft has become a major focus of research. Novel biomaterials have been manufactured, and tissue-biomaterial interactions have been optimized. Tissue engineering technology has proven that the concept of partially or totally living blood vessels is feasible. The purpose of this review is to outline the vascular graft materials that are currently being implanted, taking into account cell-biomaterial physiology, tissue engineering approaches and the collective achievements of the authors., J. Chlupáč, E. Filová, L. Bačáková., and Obsahuje seznam literatury