Autologous vein grafts used as aortocoronary bypasses are often prone to intimal hyperplasia, which results in stenosis and occlusion of the vein. The aim of this study was to prevent intimal hyperplasia using a newly developed perivascular system with sustained release of sirolimus. This system of controlled drug release consists of a polyester mesh coated with a copolymer of L-lactic acid and ε -caprolactone that releases sirolimus. The mesh is intended for wrapping around the vein graft during surgery. The mesh releasing sirolimus was implanted in periadventitial position onto arteria carotis communis of rabbits, and neointimal hyperplasia was then assessed. We found that implanted sirolimus-releasing meshes reduced intima thickness by 47±10 % compared to a vein graft after 3 weeks. The pure polyester mesh decreased vein intima thickness by 35±9 %. Thus, our periadventitial system for controlled release of sirolimus prevented the develo pment of intimal hyperplasia in autologous vein grafts in vivo in rabbits. A perivascularly applied mesh releasing sirolimus is a promising device for preventing stenosis of autologous vein grafts., I. Skalský ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
The present article introduces a novel method of characterizing the macromechanical cartilage properties based on dynamic testing. The proposed approach of instrumented impact testing shows the possibility of more detailed investigation of the acting dynamic forces and corresponding deformations within the wide range of strain rates and loads, including the unloading part of stress-strain curves and hysteresis loops. The presented results of the unconfined compression testing of both the native joint cartilage tissues and potential substitute materials outlined the opportunity to measure the dissipation energy and thus to identify the initial mechanical deterioration symptoms and to introduce a better definition of material damage. Based on the analysis of measured specimen deformation, the intact and pathologically changed cartilage tissue can be distinguished and the differences revealed., F. Varga, M. Držík, M. Handl, J. Chlpík, P. Kos, E. Filová, M. Rampichová, A. Nečas, T. Trč, E. Amler., and Obsahuje bibliografii
The gold standard material in bypass surgery of blood vessels remains the patient’s own artery or vein. However, this material may be unavailable, or may suffer vein graft disease. Currently available vascular prostheses, namely polyethylene terephthalate (PET, Dacron) and expanded poly tetrafluoroethylene (ePTFE), perform well as large-caliber replacements, but their long-term patency is discouraging in small-caliber applications (<6 mm), such as in coronary, crural or microvessel surgery. This failure is mainly a result of an unfavorable healing process with surface thrombogenicity, due to lack of endothelial cells and anastomotic intimal hyperplasia caused by hemodynamic disturbances. An ideal small-diameter vascular graft has become a major focus of research. Novel biomaterials have been manufactured, and tissue-biomaterial interactions have been optimized. Tissue engineering technology has proven that the concept of partially or totally living blood vessels is feasible. The purpose of this review is to outline the vascular graft materials that are currently being implanted, taking into account cell-biomaterial physiology, tissue engineering approaches and the collective achievements of the authors., J. Chlupáč, E. Filová, L. Bačáková., and Obsahuje seznam literatury
E. Filová, M. Rampichová, M. Handl, A. Lytvynets, R. Halouzka, D. Usvald, J. Hlučilová, R. Procházka, M. Dezortová, E. Rolencová, E. Košťáková, T. Trč, E. Šťastný, L. Koláčná, M. Hájek, J. Motlík, E. Amler. and Obsahuje bibliografii
Patients treated for knee disorders were included in this study. They were examined clinically (Lequesne and Tegner scores) and by standard X-ray investigation. Patients underwent a surgical procedure, either arthroscopy or knee replacement. At the initial phase of surgery, a sample of cartilage was taken for laboratory examination. Progression of the disorder and the clinical examination was correlated with the actual state of the cartilage using a novel fluorescence approach. The intrinsic fluorescence of cartilages was shown as a suitable and sensitive method for detection of the actual state of cartilages because the correlation with X-ray examination and clinical status was found. Intrinsic fluorescence properties of cartilages from patients with chondropathy and osteoarthritis were described and found to be age-dependent. We also observed a higher concentration of advanced glycation end products due to inflammatory and/or degenerative processes in the cartilage. In addition, acute pathological changes due to diseases such as meniscal lesions or anterior cruciate ligament rupture caused a significant increase of formation of advanced glycation end products even in the group of young patients. In fact, such an observation could be crucial and important for the detection of knee conditions suspected of early meniscal and/or ACL lesions especially among young patients., M. Handl, E. Filová, M. Kubala, Z. Lánský, L. Koláčná, J. Vorlíček, T. Trč, M. Pach, E. Amler., and Obsahuje bibliografii a bibliografické odkazy
Non-woven textile mesh from polyglycolic acid (PGA) was found as a proper material for chondrocyte adhesion but worse for their proliferation. Neither hyaluronic acid nor chitosan nor polyvinyl alcohol (PVA) increased chondrocyte adhesion. However, chondrocyte proliferation suffered from acidic byproducts of PGA degradation. However, the addition of PVA and/or chitosan into a wet-laid non-woven textile mesh from PGA improved chondrocyte proliferation seeded in vitro on the PGA-based composite scaffold namely due to a diminished acidification of their microenvironment. This PVA/PGA composite mesh used in combination with a proper hydrogel minimized the negative effect of PGA degradation without dropping positive parameters of the PGA wet-laid non-woven textile mesh. In fact, presence of PVA and/or chitosan in the PGA-based wet-laid non-woven textile mesh even advanced the PGA-based wet-laid non-woven textile mesh for chondrocyte seeding and artificial cartilage production due to a positive effect of PVA in such a scaffold on chondrocyte proliferation., M. Rampichová ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
This article reviews the development of artificial bone substitutes from their older single-phase forms to novel multi-phase composites, mimicking the composition and architecture of natural bone tissue. The new generation of bone implants should be bioactive, i.e. they should induce the desired cellular responses, leading to integration of the material into the natural tissue and stimulating self-healing processes. Therefore, the first part of the review explains the common principles of the cellmaterial interaction and summarizes the strategies how to improve the biocompatibility and bioactivity of the materials by modifying the physico-chemical properties of the material surface, such as surface chemistry, wettability, electrical charge, rigidity, microroughness and especially nanoroughness. The latter has been shown to stimulate preferentially the growth of osteoblasts in comparison with other competitive cell types, such as fibroblasts, which could prevent fibrous tissue formation upon implantation. The second more specialized part of the review deals with materials suitable for bone contact and substitution, particularly novel polymer-based composites reinforced with fibres or inorganic particles and containing bioactive components, such as crystals of hydroxyapatite or other calcium phosphates, synthetic ligands for cell adhesion receptors or growth factors. Moreover, if they are degradable, they can be gradually replaced with a regenerating tissue., B. Vagaská ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
The effect of oral supplementation with glycosaminoglycans (GAG) and radical scavengers (vitamin E/selenium) on the regeneration of osteochondral defects was investigated in rabbits. After introduction of defined osteochondral defects in the knee joint, groups of ten animals were given a GAG/vitamin E/selenium mixture or a placebo (milk sugar) for 6 weeks. Following sacrifice, histological and histochemical analysis was performed. The amount of synovial fluid was increased in the placebo group, while the viscosity of the synovial fluid was significantly enhanced in the GAG group. The amount of sulfated GAG in the osteochondral regenerates (8.8±3.6 % vs. 6.0±5.6 %; p<0.03) was significantly higher in the GAG group. In both groups, the GAG amount in the cartilage of the operated knee was significantly higher than in the non-involved knee (p<0.05). Histological analysis of the regenerates in the GAG group was superior in comparison with the placebo group. For the first time, a biological effect following oral supplementation with GAG was demonstrated in healing of osteochondral defects in vivo. These findings support the known positive clinical results., M. Handl, E. Amler, K. Bräun, J. Holzheu, T. Trč, A. B. Imhoff, A. Lytvynets, E. Filová, H. Kolářová, A. Kotyk, V. Martínek., and Obsahuje bibliografii a bibliografické odkazy
Micropatterned surfaces have been used as a tool for controlling the extent and strength of cell adhesion, the direction of cell growth and the spatial distribution of cells. In this study, chemically micropattern ed surfaces were prepared by successive plasma polymerization of acrylic acid (AA) and 1,7-octadiene (OD) through a mask. Rat vascular smooth muscle cells (VSMC), bovine endothelial cells (EC), porcine mesenchymal stem cells (MSC) or human skeletal muscle cells (HSKMC) were seeded on these surfaces in densities from 9,320 cells/cm2 to 31,060 cells/cm2. All cell types adhered and grew preferentially on the strip-like AA domains. Between day 1 and 7 after seeding, the percentage of cells on AA domains ranged from 84.5 to 63.3 % for VSMC, 85.3 to 73.5 % for E, 98.0 to 90.0 % for MSC, and 93.6 to 55.0 % for HSKMC. The enzyme-linked immunosorbent assay (ELISA) revealed that the concentration of alpha-actin per mg of protein was significantly higher in VSMC on AA. Similarly, immunofluorescence staining of von Willebrand factor showed more apparent Weibel-Palade bodies in EC on AA domains. MSC growing on AA had better developed beta-actin cytoskeleton, although they were less stained for hyaluronan receptor (CD44). In accordance with this, MSC on AA contained a higher concentration of beta-actin, although the concentration of CD44 was lower. HSKMC growing on AA had a better developed alpha-actin cytoskeleton. These results based on four cell types suggest that plasma polymerization is a suitable method for producing spatially defined patterned surfaces for controlled cell adhesion, proliferation and maturation., E. Filová ... [et al.]., and Obsahuje seznam literatury
Currently-used mechanical and biological heart valve prostheses have several disadvantages. Mechanical prostheses, based on carbon, metallic and polymeric components, require permanent anticoagulation treatment, and their usage often leads to adverse reactions, e.g. thromboembolic complications and endocarditis. Xenogenous and allogenous biological prostheses are associated with immune reaction, thrombosis and degeneration, and thus they have a high rate of reoperation. Biological prostheses of autologous origin, such as pulm onary autografts, often burden the patient with a complicated surgery and the risk of reoperation. Therefore, efforts are being made to prepare bioartificial heart valves with an autologous biological component by methods of tissue engineering. They should be biocompatible, durable, endowed with appropriate mechanical properties and able to grow with a child. For this purpose, scaffolds composed of synthetic materials, such as poly(lactic acid), poly(caprolactone), poly(4-hydroxybutyrate), hydrogels or natural polymers, e.g. collagen, elastin, fibrin or hyaluronic acid, have been seeded with autologous differentiated, progenitor or stem cells. Promising results have been obtained with nanostructured scaffolds, and also with cultivation in special dynamic bioreactors prior to implantation of the bioartificial grafts into an animal organism., E. Filová ... [et al.]., and Obsahuje seznam literatury