The anticonvulsant action of two neuroactive steroids, 3α–hydroxy-5β–pregnan-20-one (pregnanolone) and triethylammonium 3α–hydroxy-20-oxo-5α–pregnan-21-yl hydrogensuccinate (THDOC-conjugate), was tested against motor seizures induced by pentetrazol in immature rats. Five age groups (7, 12, 18 and 25 days old and adult rats) were pretreated with the steroids in doses from 2.5 to 40 mg/kg i.p. Twenty minutes later pentetrazol (100 mg/kg s.c.) was administered. Minimal seizures (clonic seizures of head and forelimb muscles with preserved righting ability) could be induced in the three older age groups. They were suppressed by pregnanolone in all these tested groups (this effect was best expressed in 18-day-old rats and decreased with age), whereas significant changes in THDOC-conjugate-pretreated animals appeared only in 18-day-old rats. Generalized tonic-clonic seizures were suppressed by both neuroactive steroids in all age groups, this effect being more marked with pregnanolone and again decreased with age. The 7- and 12-day-old rats exhibited higher sensitivity of the tonic phase so that generalized clonic seizures were observed. Duration of the effect was studied in 12- and 25-day-old animals; it was substantially shorter in the older rats than in 12-day-old animals. Both drugs exhibited an anticonvulsant action in developing rats but, unfortunately, their effect was only shortlasting.
Parallel glucose measurements in blood and other different tissues give us knowledge about dynamics of glycemia changes, which depend on vascularization, distribution space and local utilization by tissues. Such information is important for the understanding of glucose homeostasis and regulation. The aim of our study was to determine the time-lag between blood, brain, and adipose tissue during rapid glucose changes in a male hHTG rat (n=15). The CGMS sensor Guardian RT (Minimed/Medtronic, USA) was inserted into the brain and into the abdominal subcutaneous tissue. Fixed insulin and variable rate of glucose infusion was used to maintain euglycemia during sensor calibration period. At 0 min, 0.5 g/kg of bolus of glucose was administered, and at 50 min, 5 IU/kg of bolus of insulin was administered. Further glucose and insulin infusion was stopped at this time. The experiment was finished at 130 min and animals were euthanized. The time-shift between glycemia changes in blood, brain, and subcutaneous tissue was calculated by identification of the ideal correlation function. Moreover, the time to achieve 90 % of the maximum glucose excursion after intervention (T90) was measured to compare our data with the literature. The time-lag blood vs. brain and blood vs. subcutaneous tissue was 10 (10; 15) min and 15 (15; 25) min, respectively. The difference was statistically significant (P=0.01). T90 after glucose bolus in brain and subcutaneous tissue was 10 min (8.75; 15) and 15 min (13.75; 21.25), respectively. T90 after insulin bolus in brain and subcutaneous tissue was 10 min (10; 15) and 20 min (20; 27.5), respectively. To the contrary, with literature, our results showed earlier glucose level changes in brain in comparison with subcutaneous tissue after glucose and insulin boluses. Our results suggest that glucose dynamics is different within monitored tissues under rapid changing glucose level and we can expect similar behavior in humans. Improved knowledge about glucose distribution and dynamics is important for avoiding hypoglycemia., M. Žourek, P. Kyselová, D. Čechurová, Z. Rušavý., and Seznam literatury
High plasma triglyceride (TG) level is a major independent risk factor of coronary heart disease. A newly identified Apolipoprotein A5 (Apoa5) gene has been shown to play an important role in determining plasma TG concentrations in humans and mice. Prague hereditary hypertriglyceridemic (HTG) rats are a useful model of human hypertriglyceridemia and other symptoms of metabolic syndrome. Thus, the variation of Apoa5 gene and its expression were studied in this strain under normal conditions and after chronic fructose loading. Lewis and Wistar rats served as normotriglyceridemic controls. Plasma TG were significantly higher in HTG rats in comparison with both control strains. Sequence analysis of the rat Apoa5 gene revealed the existence of two introns. However, screening of the coding regions and intron-exon boundaries of Apoa5 gene did not indicate any mutation of this gene in HTG rats in comparison with Lewis and Wistar ones. Under the basal conditions the expression of Apoa5 was lower in all age groups of HTG rats compared to Wistar animals. Furthermore, during chronic fructose loading there were no significant changes of Apoa5 expression in HTG rats, although plasma TG levels rose 3-4 times within first two days of fructose loading and were increased during the whole period of fructose treatment. In conclusion, Apoa5 does not seem to be a genetic determinant of hypertriglyceridemia in HTG rats. The absence of significant changes in Apoa5 gene expression during chronic fructose-induced TG elevation excludes its major role in mechanisms compensating severe hypertriglyceridemia.
Early consequences of lithium-pilocarpine convulsive status epilepticus (SE) were studied six days after this status had been induced in rat pups at the age of either 12 or 25 days. Studies of spontaneous EEG activity demonstrated the presence of epileptic phenomena (isolated spikes) in both hippocampus and cortex (cortical spikes were more expressed in the older group). There were no marked behavioral correlates of spikes and transition into the ictal phase was exceptional. The motor performance on a rotorod and a horizontal bar was the same in experimental and control rats of both ages. Behavior in the open field was changed in a reverse manner in the two age groups: the locomotor activity of rats with induced seizures at the age of 12 days was significantly lower than that of their control siblings, whereas animals undergoing status at the age of 25 days were hyperactive. In addition, they also exhibited increased exploratory activity (rearing) and their habituation to the open field was deranged. Nissl-stained brain sections demonstrated extensive brain damage in the older group in contrast to the negative findings in younger animals. EEG, behavioral and morphological changes induced by status epilepticus in developing rats persisted for 6 days after the status. They markedly differed according to the age of animals., L. Suchomelová, H. Kubová, R. Haugvicová, R. Druga, P. Mareš., and Obsahuje bibliografii
The parallel course of the excretion rates of bromide and sodium ions was demonstrated in adult male and female rats administered simultaneously with potassium 82Br-bromide and 24Na-sodium chloride. The animals were exposed to various intakes of sodium ions accompanied with five different anions: Br-, Cl-, HCO3-, ClO4-, and SCN-. Regardless of the anion accompanying the sodium ion, the excretion rates of 82Br- and 24Na+ ions were proportional to the magnitude of sodium intake in the animals. Hence, we have proved our hypothesis that the biological half-life of bromide depends on the magnitude of sodium intake rather than on the intake of chloride.
The role of the cortico-tectal pathways in the processing of auditory signals was investigated by recording the click-evoked responses and extracellular multiple unit activity in the inferior colliculus (IC) after functional ablation of the auditory cortex (AC) by local intracortical application of a sodium channel blocker, tetrodotoxin (TTX). Click-evoked IC responses (IC-ER) and multiple unit activity in response to tone bursts were recorded with implanted electrodes in the IC of rats lightly anaesthetized with xylazine. Neural activity was recorded before and after the application of TTX into the ipsilateral auditory cortex (AC) through three implanted cannulas in a total dose of 30 ng. The functional status of the AC was monitored by recording click-evoked middle latency responses from a ball electrode implanted on the AC. During inactivation of the AC, IC-ER amplitudes were either increased (48 % of the cases), decreased (32 % of the cases) or not evidently changed (20 % of the cases). Corresponding effects were observed in the firing rate of IC neurons. Functional ablation of the AC also resulted in a significant prolongation of the latencies of individual waves of the IC-ER. However, the discharge pattern of the multiple unit responses, response thresholds and tuning were not altered during AC inactivation. IC neural activity recovered within several hours, and maximally during 2 days. The results reveal principles of the interaction of cortico-tectal pathways with IC neuronal activity., F. C. Nwabueze-Ogbo, J. Popelář, J. Syka., and Obsahuje bibliografii
A hemodynamic feature of chronic sinoaortic
-denervated (SAD)
rats is the increase in blood pressure variability (BPV) without
significant change
s in the average level of blood pressure (BP).
The current study
was designed to
investigate the changes in BP
V- shaped waves (V waves) in SAD rats. Sprague
-Dawley (SD)
rats were divided into
2 groups: SAD rats and sham
-operated
rats (n=13
). Hemodynamics measurements were obtained in
conscious, freely moving rats, four weeks after sinoaortic
denervation or sham operation. V wave indices were evaluated in
rats in both conscious and quiet states.
Additionally, n
ormal and
high BPV was simulate
d by the production of V waves with
different amplitudes. The results showed that the V wave
amplitude was dramatically increased, with a significantly
prolonged duration and reduced frequency in SAD rats
. V wave
BPV in SAD
rats
was significantly increased
, though BP remained
unchanged. The twenty
-four hour BPV in all rats was positively
correlated with amplitude, duration time and V wave BPV and
negatively correlated with frequency. The systolic
BP spectral
powers in the low frequency range (0.38
-0.45
Hz)
were
significantly reduced in the V waves of SAD rats. Moreover, there
was a remarkable increase in mean BPV and a normal mean BP
after simulating high BPV in SAD rats
. The
se results
suggest that
enhancement of V waves might be a waveform character of BP in
SAD rats in both the conscious and quiet states. These types of
V waves appear to be related to a depression of sympathetic
regulation of BP induced by sinoaortic
denervation.
This experiment tested the effect of clozapine on the sympathetic and thermogenic effects induced by orexin A. The firing rates of the sympathetic nerves to interscapular brown adipose tissue (IBAT), along with IBAT and colonic temperatures were monitored in urethane-anesthetized male Sprague-Dawley rats before and for 5 h after an injection of orexin A (1.5 nmol) into the lateral cerebral ventricle. The same procedure was carried out in rats treated with orexin A plus an intraperitoneal administration of clozapine (8 mg/kg bw), an atypical antipsychotic that is largely used in the therapy of schizophrenia. The same variables were monitored in rats with clozapine alone. A group of rats with saline injection served as control. The results show that orexin A increases the sympathetic firing rate, IBAT and colonic temperatures. Clozapine blocks completely the reactions due to orexin A. These findings suggest that clozapine influences strongly the thermogenic role of orexin A. Furthermore, the remarkable hyperthermic role played by orexin A is confirmed.
Many mammalian species including human are immature at birth and undergo major developmental changes during suckling and weaning period. This problem is also conspicuous for the gastrointestinal tract that undergoes abrupt transitions coinciding with birth and weaning. This review deals with the maturation of ion transport functions in colon,
the intestinal segment that plays an important role in sodium and potassium absorption and secretion. The purpose of the present review is to summarize the mechanism of sodium and potassium transport pathways and show how these transport processes change postnatally and how hormones, particularly corticosteroids, modify the pattern of
development. Finally we describe some of the ways, how to analyze corticosteroid metabolism in target tissue.