OAGL is a paper metadata dataset consisting of 17528680 records which comprise various scientific publication attributes like abstracts, titles, keywords, publication years, venues, etc. The last field of each record is the page length of the corresponding publication. Dataset records (samples) are stored as JSON lines in each text file. The data is derived from OAG data collection (https://aminer.org/open-academic-graph) which was released under ODC-BY license. This data (OAGL Paper Metadata Dataset) is released under CC-BY license (https://creativecommons.org/licenses/by/4.0/).
If using it, please cite the following paper:
Çano Erion, Bojar Ondřej: How Many Pages? Paper Length Prediction from the Metadata.
NLPIR 2020, Proceedings of the the 4th International Conference on Natural Language
Processing and Information Retrieval, Seoul, Korea, December 2020.
OAGS is a title generation dataset consisting of 34993700 abstracts and titles from scientific articles. Texts were lowercased and tokenized with Stanford CoreNLP tokenizer. No other preprocessing steps were applied in this release version. Dataset records (samples) are stored as JSON lines in each text file. The data is derived from OAG data collection (https://aminer.org/open-academic-graph) which was released under ODC-BY licence. This data (OAGS Title Generation Dataset) is released under CC-BY licence (https://creativecommons.org/licenses/by/4.0/). If using it, please cite the following paper: Çano, Erion and Bojar, Ondřej, 2019, "Efficiency Metrics for Data-Driven Models: A Text Summarization Case Study", INLG 2019, The 12th International Conference on Natural Language Generation, November 2019, Tokyo, Japan. To reproduce the experiments in the above paper, you can use oags_train1.txt, oags_train2.txt, oags_train3.txt, oags_test.txt and oags_val.txt files. If you need more data samples you can get them from oags_train_backup.txt and oags_val-test_backup.txt.
OAGSX is a title generation dataset consisting of 34408509 abstracts and titles from scientific articles. The texts were lowercased and tokenized with Stanford CoreNLP tokenizer. No other preprocessing steps were applied in this release version. Dataset records (samples) are stored as JSON lines in each text file.
The data is derived from OAG data collection (https://aminer.org/open-academic-graph) which was released under ODC-BY license.
This data (OAGSX Title Generation Dataset) is released under CC-BY license (https://creativecommons.org/licenses/by/4.0/).
If using it, please consider citing also the following paper:
Çano Erion, Bojar Ondřej. Two Huge Title and Keyword Generation Corpora of Research Articles.
LREC 2020, Proceedings of the the 12th International Conference on Language Resources and Evaluation,
Marseille, France, May 2020.