This paper deals with the modelling and control of balanced wheeled autonomous mobile robot. For the MBS dynamics modelling software tool Matlab-SimMechanics is used. The model derived automatically from geometric-topological description of MBS is used for the control purposes (local linearization for state space control, testing of nonlinear system controlled by LQR) and also as a reference during the analytical model formulation for global feedback linearization. The dual accelerometer is used as a tilt sensor and the proposed method for sensory processing is described in this paper. The approach is based on iterative solution of nonlinear equation. Control using the state space (LQR) and the feedback linearization is compared. Also, the influence of sensor noises and delays implemented into the model are discussed. Finally, the solution is verified on real physical model controlled by means of hardware ni the loop (HIL). and Obsahuje seznam literatury
System modeling is a vital tool for cost reduction and design process speed up in most engineering fields. The paper is focused on modeling of hydraulic arm as a part of intelligent prosthesis project, in the form of 2DOF open kinematic chain. The arm model combines mechanical, hydraulic and electric subsystems and uses Matlab as modeling tool. SimMechanics Matlab extension is used for mechanical part modeling, SimHydraulics toolbox is used for modeling of hydraulic circuit used for actuating corresponding mechanical components. Interconnection between the subsystems is essential issue, as it is surprisingly not a straightforward task in Matlab/Simulink, despite the fact that each toolbox works well if used in stand alone mode. The model is verrified with the physical model of hydraulic arm actuated by micro electro-hydraulic components. and Obsahuje seznam literatury