Roads and highways represent one of the most important anthropogenic impacts on natural areas and contribute to habitat fragmentation, because they are linear features that can inhibit animal movement, thereby causing barrier effects by subdividing the populations adjacent to the roads. The study presented here aims to determine, to which extent roads act as a barrier, subdividing populations of three species of small forest mammals: bank vole, yellow-necked mouse and common shrew, and what is the relative importance of road width and traffic intensity on the barrier effect. The study was carried out at four 25 m long segments of roads, close to the city of České Budějovice. All segments crossed a forest. The capture-recapture method was applied to determine the crossing rates of animals. The traps were checked three times each day during four consecutive nights, in summer and in autumn. We found that: (1) roads strongly prevent crossing movements in all three studied species, (2) there are interspecific differences in road crossing rates, (3) species cross more often narrow than wide roads, (4) traffic intensity does not affect the crossing rates.
A myxosporean species found to develop in the liver of 10 out of 24 common shrews, Sorex araneus L., caught in South Bohemia, Czech Republic, was identified as Soricimyxum fegati Prunescu, Prunescu, Pucek et Lom, 2007, the unique representative of the genus and the first myxosporean species known to develop from plasmodia to spores in a terrestrial mammal. The original description of this species, based on fixed material, is supplemented with new data based on fresh material and with partial sequence of SSU rDNA (GenBank Acc. No. EU232760). Phylogenetic analysis of SSU rDNA revealed that S. fegati is closely related to myxosporeans infecting gall bladders of freshwater fish.
Soricimyxum fegati gen. et sp. n. is a new myxosporean (Myxozoa) species discovered in the liver of shrews, Sorex araneus L., collected in the Bialowieza primeval forest (Poland). Both developmental stages and mature spores were found during a histological study. The infection had about 40% prevalence at the investigated locality. Plasmodia were polysporic. Elongated plasmodia with an average size of 30 by 8 µm occupied bile ducts and larger rounded plasmodia up to 80 µm in diameter were found in liver parenchyma where they most probably entered after the ducts had been destructed. Plasmodia in both locations elicited a vigorous inflammatory reaction. Spores were of an ovoid shape, 7 µm long, 5.4 µm wide and about 3.5 µm thick. They had two shell valves and two equal polar capsules, located in opposite ends of the spore.
In South Bohemia, Czech Republic, 178 shrews, including 98 common shrews, Sorex araneus L., 70 pygmy shrews, Sorex minutus L., and 10 lesser white-toothed shrews, Crocidura suaveolens (Pallas), were examined for Soricimyxum fegati Prunescu, Prunescu, Pucek et Lom, 2007 infections, using squash preparations of unfixed tissues, histological sections and molecular methods. The infection was found in 51 (52%) S. araneus, 14 (20%) S. minutus and 1 (10%) C. suaveolens. The records of the latter two species extend host range of S. fegati. Lesions associated with S. fegati infections in the liver, the organ of specific localisation of the parasite, were found to be induced by proliferative stages migrating toward lumina of bile ducts. In other organs of these three host species, xenoma-like formations (XLFs) were found that severely injured blood vessels. XLFs contained presporogonic stages of S. fegati, whose species identity was evidenced using molecular methods.