This study investigated the contribution of reactive oxygen species (ROS) to blood pressure regulation in conscious adult male Wistar rats exposed to acute stress. Role of ROS was investigated in rats with temporally impaired principal blood pressure regulation systems using ganglionic blocker pentolinium (P, 5 mg/kg), angiotensin converting enzyme inhibitor captopril (C, 10 mg/kg), nitric oxide synthase inhibitor L-NAME (L, 30 mg/kg) and superoxide dismutase mimeticum tempol (T,25 mg/kg). Mean arterial pressure (MAP) was measured by
the carotid artery catheter and inhibitors were administered intravenously. MAP was disturbed by a 3-s air jet, which increased MAP by 35.2±3.0 % vs. basal MAP after the first exposure. Air jet increased MAP in captopril-
and tempol-treated rats similarly as observed in saline-treated rats. In pentolinium-treated rats stress significantly decreased MAP vs. pre
-stressvalue. In L-NAME-treated rats stress failed to affect MAP
significantly. Treatment of rats with P+L+C resulted in stress-induced MAP decrease by 17.3±1.3 % vs. pre-stress value and settling time (20.1±4.2 s). In P+L+C+T-treated rats stress led to maximal MAP decrease by 26.4±2.2 % (p<0.005 vs. P+L+C) and prolongation of settling time to 32.6±3.3 s (p<0.05 vs. P+L+C). Area under the MAP curve was significantly smaller in P+L+C-treated rats compared to P+L+C+T-treated ones (167±43 vs. 433±69 a.u., p<0.008). In conclusion, in rats with temporally impaired blood pressure regulation, the lack of ROS resulted in greater stress-induced MAP alterations and prolongation of time required to reach new post-stress steady state.