Traditionally, the Microsporidia were primarily studied in insects and fish. There were only a few human cases of microsporidiosis reported until the advent of AIDS, when the number of human microsporidian infections dramatically increased and the importance of these new pathogens to medicine became evident. Over a dozen different kinds of microsporidia infecting humans have been reported. While some of these infections were identified in new genera (Enterocytozoon, Vittaforma), there were also infections identified from established genera such as Pleistophora and Encephalitozoon. The genus Pleistophora, originally erected for a species described from fish muscle, and the genus Encephalitozoon, originally described from disseminated infection in rabbits, suggested a link between human infections and animals. In the 1980's, three Pleistophora sp. infections were described from human skeletal muscle without life cycles presented. Subsequently, the genus Trachipleistophora was established for a human-infecting microsporidium with developmental differences from species of the genus Pleistophora. Thus, the existence of a true Pleistophora sp. or spp. in humans was put into question. We have demonstrated the life-cycle stages of the original Pleistophora sp. (Ledford et al. 1985) infection from human muscle, confirming the existence of a true Pleistophora species in humans, P. ronneafiei Cali et Takvorian, 2003, the first demonstrated in a mammalian host. Another human infection, caused by a parasite from invertebrates, was Brachiola algerae (Vavra et Undeen, 1970) Lowman, Takvorian et Cali, 2000. The developmental stages of this human muscle-infecting microsporidium demonstrate morphologically what we have also confirmed by molecular means, that B. algerae, the mosquito parasite, is the causative agent of this human skeletal muscle infection. B. algerae had previously been demonstrated in humans but only in surface infections, skin and eye. The diagnostic features of B. algerae and P. ronneafiei infections in human skeletal muscle are presented. While Encephalitozoon cuniculi has been known as both an animal (mammal) and human parasite, the idea of human microsporidial infections derived from cold-blooded vertebrates and invertebrates has only been suggested by microsporidian phylogeny based on small subunit ribosomal DNA sequences but has not been appreciated. The morphological data presented here demonstrate these relationships. Additionally, water, as a link that connects microsporidial spores in the environment to potential host organisms, is diagrammatically presented.
The microsporidium Trachipleistophora hominis Hollister, Canning, Weidner, Field, Kench et Marriott, 1996, originally isolated from human skeletal muscle cells, inhibited myotube formation from myoblasts when grown in a mouse myoblast cell line C2,C12. Uninfected cultures readily converted to myotubes. Albendazole, a drug with known antimicrosporidial activity, was tested against T. hominis in C2,C12 cells. The drug was added when infection had reached 75% of C2,C12 cells, a level comparable to that obtained in heavily infected muscle in vivo. Doses of 1 ng/ml and 10 ng/ml had no effect on merogony or sporogony. In cultures exposed to 100 ng/ml albendazole, the C2,C12 cells remained in good condition while infection levels dropped to 25% over 7 weeks. Drug doses of 500 ng/ml and 1,000 ng/ml were deleterious to the host cells but some spores retained viability and were able to establish new infections once albendazole pressure was removed. T. hominis meronts exposed to 100 ng/ml albendazole mostly lacked the normally thick surface coat and its reticulate extensions. Meronts were not seen in cultures exposed to higher drug doses. Albendazole at a concentration of 100 ng/ml and higher had a profound effect on spore morphogenesis. There was erratic coiling of the polar tube, often involving the formation of double tubes, and chaotic disposition of membranes which could have been those of polaroplast. The in vitro susceptibility of T. hominis to albendazole was low in comparison with in vitro susceptibility of other microsporidia of human origin.