The Northern pine processionary moth, Thaumetopoea pinivora (Treitschke, 1834) shows a highly scattered distribution with fragmented populations across Europe. A previous study exploring the postglacial history of T. pinivora defined it as a cold-tolerant relict species and concluded that a progressive reduction of suitable habitats after the postglacial expansion from refugia in the southern Iberian peninsula best explained the distribution and genetic structure of populations of this species. However, recent records, both by us and others, challenge this view. Surprisingly, some of the newly found populations from southern Spain use black pine, Pinus nigra J.F. Arnold as a host plant despite the fact that the typical host of the species, Scots pine, Pinus sylvestris L. occurs in the area. We provide genetic data for one of these recently found southern populations where the larvae feed on P. nigra, and compare this with previously published data on individuals collected on P. sylvestris. This data reveals that populations from different host trees are no more genetically differentiated than populations sharing the same host plant. The findings of a wider diet breadth open the way to widen the search for the still unidentified glacial refugium of T. pinivora, and as such may contribute to a better understanding about how the species has spread across Europe., José A. Hódar, Anna Cassel-Lundhagen, Andrea Battisti, Stig Larsson., and Obsahuje bibliografii
The use of phytoseiid species in biological plant protection is widespread. However, the techniques used to release them differ. The possible release of Amblyseius andersoni (Chant, 1959) using a new method was tested. High numbers of this mite overwinter in the ground litter in Hungarian orchards. By transferring such ground litter to plots in young orchards, the population density was found to be significantly increased in the release compared to control plots; A. andersoni became the dominant phytoseiid species in the new orchard. Due to the rate at which it spreads, this species was also recorded in the control plots towards the end of the growing season (Aug., Sept.), at which time there was no significant difference in the numbers of this species in the treated and control plots. In the winter following release, A. andersoni was found in the ground litter of the orchard., Árpád Szabó, Béla Pénzes., and Obsahuje seznam literatury
Combining a biotin-enrichment protocol and 454GS-FLX titanium pyrosequencing technology, we characterised 22 polymorphic microsatellite loci from the parasitic wasp, Habrobracon hebetor (Say) (Hymenoptera: Braconidae), a cosmopolitan species commonly used in biological control against a wide range of both major lepidopterous pests of stored products and field crops in different parts of the world. Three multiplex PCR sets were optimised and characterised across 46 H. hebetor specimens from two samples collected from millet fields in Niger. Two to 11 alleles were found per locus and observed heterozygosity ranged from 0.289 to 0.826. Polymorphism was detected in both samples with a similar level of observed heterozygosity (0.482 vs. 0.502) and number of alleles (4.1 vs. 3.6). Deviation from Hardy-Weinberg equilibrium was detected at the same five loci in both samples and five or seven more loci in each sample but was not associated with heterozygote deficiencies. Even though evidence for linkage disequilibrium was found between a few alleles, these new loci segregated independently. The variability of the 22 loci will enable estimates of genetic diversity and structure patterns, as well as gene flow between H. hebetor populations at different spatial scales. Cross-species amplifications were successful among the six Bracon spp. tested and nine loci will be particularly appropriate for population genetic studies in B. brevicornis., Madougou Garba, Anne Loiseau, Laure Benoit, Nathalie Gauthier., and Obsahuje bibliografii
The parasitic caterpillars of Maculinea (Lepidoptera: Lycaenidae) need to be adopted and nursed by ants of the genus Myrmica (Hymenoptera: Formicidae). Each Maculinea species is locally associated with one or a few main and often several secondary host species. To determine whether the parasite-host associations bear marks of cophylogenetic constraints, we reconstructed phylogenies of Maculinea and Myrmica using DNA sequence data. We searched for evidence of cospeciation with a tree-independent (ParaFit) and tree-based (TreeFitter) method. This did not reveal any indication of phylogenetic host tracking in Maculinea. This agrees with earlier insights, which emphasise that as most of the potential host ant populations are never infested by Maculinea, the selective pressure of the butterflies on Myrmica is likely to be slight. Each Maculinea species also specialises on one or a few host plant species before adoption by ants. We suggest that Maculinea species have a substantial potential to accommodate evolutionarily to geographically changing ranges of potential Myrmica hosts, available at the oviposition sites of the butterflies. We use recently published evidence on geographically varying host ant species to discuss a suite of plausible scenarios of adaptive shifts to new Myrmica host species. and Gunther Jansen, Kari Vepsäläinen, Riitta Savolainen.
Invertebrate diversity has rapidly declined throughout Europe during the last century. Various reasons for this decrease have been proposed including human induced factors like climate change. Temperature changes alter distributions and occurrences of butterflies by determining habitat conditions at different scales. We evaluated changes in the composition of butterfly communities recorded at nine areas of fallow ground in south-western Germany in 1973, 1986, 2010 and 2012 using Pollard’s transect technique. To demonstrate the importance of climatic changes in affecting butterfly communities, we calculated the community temperature index (CTI) for each butterfly community in each year. Although they increased slightly, the CTI-values did not match the temperature trends recorded in the study region. However, the reduction in the standard deviations of the CTIs over time is reflected in the marked loss of cold- and warm-adapted species due to their inability to cope with temperature and land-use induced habitat changes. Results of our butterfly surveys indicate a marked decline in species richness and striking changes in the composition of the butterfly communities studied. This trend was most pronounced for habitat specialists, thus mirroring a depletion in trait diversity. Our results indicate that, in the course of large-scale anthropogenic changes, habitat degradation at smaller scales will continuously lead to the replacement of habitat specialists by ubiquitous species., Katharina J. Filz ... [et al.]., and Obsahuje seznam literatury
The Australian species of the genus Coelioxys Latreille are revised. Six species are recognized: Coelioxys albolineata Cockerell, 1905; Coelioxys froggatti Cockerell, 1911; Coelioxys reginae Cockerell, 1905; Coelioxys weinlandi Schulz, 1904 and two new species: Coelioxys julia sp. n. and Coelioxys tasmaniana sp. n. Three names are synonymized: Coelioxys biroi Friese, 1909 syn. n. and Coelioxys albolineata darwiniensis Cockerell, 1929 syn. n. under Coelioxys albolineata, and Coelioxys victoriae Rayment, 1935 syn. n. under Coelioxys froggatti. Species descriptions and redescriptions, illustrations, distribution maps, floral records and a key to both sexes of all species are provided., Léo Correia da Rocha-Filho., and Obsahuje bibliografii
Many species of carabid beetles are important pre- and post-dispersal seed feeders of herbaceous plants. Here we summarise data from dissections, field observations, rearing and "cafeteria" experiments on 55 granivorous and 188 omnivorous species that occur in Italy. We tested the hypothesis that seed feeding carabids are restricted to taxa with pronounced morphological adaptations for manipulating and crushing seeds in both the larval and adult stages. The feeding guilds of carabids were rearranged into the following groups: (i) strict predators with long mandibles and predaceous larvae, often depending also on non-prey food; (ii) omnivorous species with stout mandibles and larvae of a seed-eating morphotype; (iii) granivorous species, feeding only on seeds with larvae sometimes of the scarabeoid c-form type. The seed feeding carabids in the Italian fauna belong to the tribe Zabrini (Amara and Zabrus genera) and to all the Harpalinae (sub)tribes, from Anisodactylini to Ditomina. The time of reproduction seems to be associated with habitat preference; wetland or dry open land, rather than true granivorous versus omnivorous habits, but in stenophagous seed feeders, a phenological coincidence with particular plants is sometimes recorded., Federica Talarico, Anita Giglio, Roberto Pizzolotto, Pietro Brandmayr., and Obsahuje bibliografii
To understand the factors governing the diversity, abundance and host associations of parasitoids attacking frugivorous drosophilid flies on Iriomote-jima, a subtropical island of Japan, we monitored parasitism on several occasions over the period 2003–2009. Fifteen drosophilid and 12 parasitoid species were recorded. Three species of Drosophila, D. bipectinata, D. albomicans and D. takahashii, bred abundantly in banana baits, though their abundance varied between years and seasons. Frequent parasitoid species were Asobara japonica, A. pleuralis (Braconidae), Leptopilina ryukyuensis and L. pacifica (Figitidae). L. victoriae was recorded only in December 2003. In addition, host acceptance and host suitability of the four most frequently recorded parasitoid species were studied in the laboratory. Most parasitoid and drosophilid species showed species-specific associations with more than one antagonist species, suggesting that they have been subjected to complex coevolutionary interactions. In addition, host range of most of the parasitoid species included one of the three major Drosophila species, suggesting that the abundance of potential hosts is one of the factors determining the evolution of parasitoid host use., Biljan Novkovic ... [et al.]., and Obsahuje seznam literatury
Semi-natural habitats are key components of rural landscapes because they shelter a significant number of overwintering arthropods that are beneficial to agriculture. However, woodlots are semi-natural habitats with high patch-level heterogeneity and this aspect has been poorly studied. The purpose of this study was to determine the influence of woodlot heterogeneity on overwintering ground beetles. Woodlot heterogeneity was characterized in terms of distance from the woodlot boundary and date of the most recent logging operation. We used emergence traps to quantify the population density of ground beetles that overwintered in the different parts of the woodlot. In woodlot edges the densities and species richness of ground beetles were significantly higher than in the rest of the woodlot. Ground beetles that are active in crop fields overwintered in the edges but not in the inner zone of the woodlot. Species assemblages of ground beetles overwintering in the edges were highly diverse. The date of the most recent logging operation did not explain the distribution of ground beetles that overwintered in the woodlot. Our results show that woodlots, and in particular their edges, are used as a winter shelter by ground beetles that spend part of their life in crops, which potentially favours biological control in adjacent crop fields. and Anthony Roume, Annie Ouin, Laurent Raison, Marc Deconchat.