Calling songs of the sibling species Cicada barbara and C. orni were studied in sympatric and allopatric populations on the Iberian Peninsula, where the distribution ranges of both species overlap. No difference was found in any acoustic property for the sympatric and allopatric populations of C. barbara studied and only one variable (minimum frequency) was significantly different between sympatric and allopatric populations of C. orni. No hybrids with intermediate songs were found and no character displacement in the calling song was detected. It is very likely that these species were already considerably differentiated when they met on the Iberian Peninsula. Particularly, premating (or even postmating) isolating mechanisms (according to Mayr's Biological Species Concept) or different specific-mate recognition systems (in the view of the Paterson's Recognition Concept of Species) were most likely already present, which prevented hybridization between this pair of species. It is assumed that the calling songs are the most important premating isolating mechanism corresponding to the specific-mate recognition systems of these species of cicadas.
The seven taxa of the cicada genus Tibicina (T.corsica corsica, T. corsica fairmairei, T. garricola, T. haematodes, T. nigronervosa, T. quadrisignata, T. tomentosa) which occur in continental France and Corsica were investigated. Extrinsic factors (geographical barriers) and factors intrinsic to the ecology of species were considered in an effort to understand the biogeography of Tibicina. Three patterns related to intrinsic factors were recognised: (1) pairs of taxa with sympatric distributions but with divergent habitat preferences; (2) pairs of taxa with sympatric distributions and similar habitat but with allochronic occurrence; (3) pairs of taxa with similar ecology but with allopatric distributions. When taxa were separated by their habitat, the height of vegetation appeared to be more important than the floristic composition of the habitat. These factors lead to the partitioning of resources in time and space. All taxa occur in secondary vegetations. Human agro-pastoral activity has probably influenced the dynamics of cicada populations and the maintenance of isolation between them.