Apolipoprotein A-V plays an important role in the determination of plasma triglyceride (TG) concentration. We aimed to determine whether polymorphisms -1131T>C (rs662799) and 56C>G (rs3135506) of the APOA5 gene have an impact on the course of postprandial lipemia induced by a fat load and a fat load with added glucose. Thirty healthy male volunteers, seven heterozygous for the -1131C variant and three for the 56G variant (HT) carriers, and 20 wild-type (WT) carriers underwent two 8-hour tests of postprandial lipemia – one after an experimental breakfast consisting of 75 g of fat and second after a breakfast consisting of 75 g of fat and 25 g of glucose. HT carriers had a higher postprandial response after fat load than WT carriers (AUC TG: 14.01±4.27 vs. 9.84±3.32 mmol*h/l,
respectively, p=0.016). Glucose added to the test meal suppressed such a difference. Heterozygous carriers of the variants of APOA5 (-1131C and 56G) display more pronounced postprandial lipemia after pure fat load than WT carriers. This statistically significant difference disappears when glucose is added to a fat load, suggesting that meal composition modulates the effect of these polymorphisms on the magnitude of postprandial lipemia.
The apolipoprotein A-V (apo A-V) plays an important role in regulation of triglyceride (TG) concentration in serum. To better understand how apo A-V affects triglyceridemia and glucoregulation, the lipoprotein lipase (LPL) activity was determined using intravenous fat tolerance test (IVFTT) and oral glucose tolerance test (oGTT) was performed in carriers of apolipoprotein A-V gene ( APOAV) variants known to be associated with increased triglyceridemia. Twelve carriers of 19W variant, 16 carriers of -1131C variant, 1 combined heterozygote and 16 control subjects homozygous for wild type variants (19S/-1131T) were selected from a population sample and matched with respect to body mass index and age. The APOAV variants carriers had increased TG, very low density lipoprotein-TG, and apo B concentrations (p < 0.05). The LPL activity evaluated as k2 rate constant for clearance of Intralipid® was 14 % lower in APOAV variants carriers. The depression of nonesterified fatty acids (NEFA) concentration after glucose load was delayed in APOAV variants carriers in spite of the same insulinemia and glycemia. Our results suggest that variants of APOAV combined with increased triglyceridemia are associated with lower LPL activity in vivo and with disturbances of regulation of NEFA concentration after glucose load., J. Kovář, V. Adámková., and Obsahuje bibliografii a bibliografické odkazy
The availability of the human genome sequence and the recently completed draft sequences of two major mammalian model species, the mouse (Mus musculus) and the rat (Rattus norvegicus), allow researchers to apply novel approaches for gene identification and characterization, using methods of comparative and functional genomics. Recently, a new gene coding for apolipoprotein A-V was identified in the vicinity of APOA-I/C-III/A-IV cluster on human chromosome 11q23 by comparative sequencing method. In a relatively short time, compelling evidence accumulated for the substantial role of APOA-V in lipid metabolism. Studies in knock-out and transgenic mice revealed that its expression pattern correlates negatively with triglyceride levels. This observation was verified in human population studies in variety of ethnic and age groups. Several single nucleotide polymorphisms were described and particular SNP alleles and haplotypes in the APO A-V gene region were shown to be associated with dyslipidemia. The discovery and characterization of the APO A-V demonstrates current possibilities of the integrative approaches in biology, boosted by the available bioinformatic tools., O. Šeda, L. Šedová., and Obsahuje bibliografii