In this paper, we introduce six basic types of composition of ternary relations, four of which are associative. These compositions are based on two types of composition of a ternary relation with a binary relation recently introduced by Zedam et al. We study the properties of these compositions, in particular the link with the usual composition of binary relations through the use of the operations of projection and cylindrical extension.
We present a formal scheme which whenever satisfied by relations of a given relational lattice L containing only reflexive and transitive relations ensures distributivity of L.