The aim of this study was to obtain a detailed analysis of the relationship between the finger arterial compliance C [ml/mm Hg] and the arterial transmural pressure Pt [mm Hg]. We constructed a dynamic plethysmograph enabling us to set up a constant pressure Pcss [mm Hg] and a superimposed fast pressure vibration in the finger cuff (equipped with a source of infra-red light and a photoelectric sensor for the measurement of arterial volume). Pcss could be set on the required time interval in steps ranging between 30 and 170 mm Hg, and on sinusoidal pressure oscillation with an amplitude Pca (2 mm Hg) and a frequency f (20, 25, 30, 35, 40 Hz). At the same time continuous blood pressure BP was measured on the adjacent finger (Portapres). We described the volume dependence of a unitary arterial length on the time-varying transmural pressure acting on the arterial wall (externally Pcss+Pca.sin(2πf), internally BP) by a second-order differential equation for volume. This equation was linearized within a small range of selected BP. In the next step, a Fourier transform was applied to obtain the frequency characteristic in analytic form of a complex linear combination of frequency functions. While series of oscillations [Pca, f] were applied for each Pcss, the corresponding response of the plethysmogram was measured. Amplitude spectra were obtained to estimate coefficients of the frequency characteristic by regression analysis. We determined the absolute value: elastance E, and its inverse value: compliance (C=1/E). Then, C=C(Pt) was acquired by applying sequences of oscillations for different Pcss (and thus Pt) by the above-described procedure. This methodology will be used for the study of finger arterial compliance in different physiological and pathological conditions., J. Moudr, J. Svačinová, E. Závodná, N. Honzíková., and Obsahuje bibliografii
Spontaneously hypertensive rats (SHR/NIH strain) harbor a deletion variant in the Cd36 fatty acid transporter and display defective fatty acid metabolism, insulin resistance and hypertension. Transgenic rescue of Cd36 in SHR ameliorates insulin resistance and improves dyslipidemia. However, the role of Cd36 in blood pressure regulation remains controversial due to inconsistent blood pressure effects that were observed with transgenic expression of Cd36 on the SHR background. In the current studies, we developed two new SHR transgenic lines, which express wild type Cd36 under the control of the universal Ef-1 promoter, and examined the effects of transgenic expression of wild type Cd36 on selected metabolic and cardiovascular phenotypes. Transgenic expression of Cd36 in the new lines was associated with significantly decreased serum fatty acids, amelioration of insulin resistance and glucose intolerance but failed to induce any consistent changes in blood pressure as measured by radiotelemetry. The current findings confirm the genetic association of defective Cd36 with disordered insulin action and fatty acid metabolism in the SHR/NIH strain and suggest that Cd36 is linked to other gene(s) on rat chromosome 4 that regulate blood pressure., M. Pravenec, V. Landa, V. Zídek, A. Musilová, L. Kazdová, N. Qi, J. Wang, E. St.Lezin, T. W. Kurtz., and Obsahuje bibliografii
In rats, neonatal administration of monosodium glutamate (MSG) causes serious damage in some hypothalamic and circumventricular areas. The resulting loss of appropriate neurons important for the regulation of blood pressure (BP) may modulate cardiovascular system receptivity in these animals. In the present study, the reactivity of the cardiovascular system to intravenous injection of ai-adrenergic receptor agonist phenylephrine (200 ^g/kg/ml) and angiotensin II (500 ng/kg in 0.6 ml for 2 min) was investigated in adult rats which had been neonatally treated with MSG or vehicle. BP parameters measured directly in conscious cannulated rats were continuously registered using a computerized system. Under basal conditions, MSG-treated rats had slightly lower systolic, diastolic and mean BP with significant differences in pulse pressure (systolic - diastolic BP). In MSG-treated animals, the maximal increase of mean arterial BP after phenylephrine and the duration of BP elevation after both agents were significantly reduced. Slopes of the linear portion of baroreceptor function curves in control and MSG-treated rats did not differ significantly, indicating that baroreflex efficacy was unchanged. The results obtained by perfusion of the hindlimb vascular bed in situ showed that the pressure responses to increasing doses of noradrenaline in MSG-treated rats were reduced. These findings demonstrate that neonatal treatment of rats with MSG lowers the responsiveness of the cardiovascular system, particularly in response to a-adrenergic stimulation. It is suggested that the attenuation of cardiovascular reactivity in MSG-treated rats is, at least partly, caused by diminished vascular responsiveness.
The aim of our study was to evaluate the potential differences in blood pressure (BP) profile in subjects with different forms of primary aldosteronism (PA). Simultaneously, we studied the effects of PA treatment on BP curve. We therefore monitored 24-hour ambulatory blood pressure values in 22 subjects with aldosterone-producing adenoma (APA), 22 subjects with idiopathic hyperaldosteronism (IHA) and 33 subjects with essential hypertension (EH) as controls. We found a significantly attenuated nighttime systolic BP decline in the APA group (P=0.02). Patients with IHA had lower nighttime systolic BP values (P=0.01) and also a diastolic BP decline (P=0.02) during the night in comparison with EH. We did not detect any significant differences in BP profile characteristics between APA and IHA. Specific treatment of primary aldosteronism (adrenalectomy, treatment with spironolactone) led to the normalization of the BP curve with a marked BP decline. Our study thus demonstrates a blunted diurnal BP variability in patients with primary aldosteronism the specific treatment of which normalized previously attenuated nocturnal BP fall., T. Zelinka, J. Widimský., and Obsahuje bibliografii
Studies have shown that uridine concentration in plasma may be an indicator of uric acid production in patients with gout. It has been also postulated that uridine takes part in blood pressure regulation. Since physical exercise is an effective tool in treatment and prevention of cardio-vascular diseases that are often accompanied by hyperuricemia and hypertension, it seemed advisable to attempt to evaluate the relationship between oxypurine concentrations (Hyp, Xan and UA) and that of Urd and BP after physical exercise in healthy subjects. Sixty healthy men (17.2±1.71 years, BMI 23.2±2.31 kg m-2, VO2max 54.7±6.48 ml kg-1 min-1) took part in the study. The subjects performed a single maximal physical exercise on a bicycle ergometer. Blood for analyses was sampled three times: immediately before exercise, immediately after exercise, and in the 30th min of rest. Concentrations of uridine and hypoxanthine, xanthine and uric acid were determined in whole blood using high-performance liquid chromatography. We have shown in this study that the maximal exercise-induced increase of uridine concentration correlates with the post-exercise increase of uric acid concentration and systolic blood pressure. The results of our study show a relationship between uridine concentration in blood and uric acid concentration and blood pressure. We have been the first to demonstrate that a maximal exercise-induced increase in uridine concentration is correlated with the post-exercise and recovery-continued increase of uric acid concentration in healthy subjects. Thus, it appears that uridine may be an indicator of post-exercise hyperuricemia and blood pressure., W. Dudzinska, A. Lubkowska, B. Dolegowska, M. Suska, M. Janiak., and Obsahuje bibliografii