This minireview briefly surveys the complexity of regulations governing the bone metabolism. The impact of clinical studies devoted to osteoporosis is briefly summarized and the emphasis is put on the significance of experimental mouse models based on an extensive use of genetically modified animals. Despite possible arising drawbacks, the studies in mice are of prime importance for expanding our knowledge on bone metabolism. With respect to human physiology and medicine, one should be always aware of possib le limitations as the experimental results may not be, or may be only to some extent, transposed to humans. If applicable to humans, results obtained in mice provide new clues for assessing un foreseen treatment strategies for patients. A recent publication representing in our opinion the important breakthrough in the field of bone metabolism in mice is commented in detail. It provides an evidence that skeleton is endocrine organ that affects energy metabolism and osteocalcin, a protein specifically synthesized and secreted by osteoblasts, is a hormone involved. If confirmed by other groups and applicable to humans, this study provides the awaited connection of long duration between bone disorders on one hand and obesity and diabetes on the other., O. Raška, K. Bernášková, I. Raška Jr., and Obsahuje seznam literatury
Bone metabolism is regulated by interaction between two skeletal cells – osteoclasts and osteoblasts. Function of these cells is controlled by a number of humoral factors, including neurohormones, which ensure equilibrium between bone resorption and bone formation. Influence of neurohormones on bone metabolism is often bimodal and depends on the tissue, in which the hormone is expressed. While hypothalamic beta-1 and beta-2-adrenergic systems stimulate bone formation, beta-2 receptors in bone tissue activate osteoclatogenesis and increases bone resorption. Chronic stimulation of peripheral beta-2 receptors is known to quicken bone loss and alter the mechanical quality of the skeleton. This is supported by the observation of a low incidence of hip fractures in patients treated with betablockers. A bimodal osteo-tropic effect has also been observed with serotonin. While serotonin synthetized in brain has osteo-anabolic effects, serotonin released from the duodenum inhibits osteoblast activity and decreases bone formation. On the other hand, both cannabinoid systems (CB1 receptors in the brain and CB2 in bone tissue) are unambiguously osteoprotective, especially with regard to the aging skeleton. Positive (protective) effects on bone have also been shown by some hypophyseal hormones, such as thyrotropin (which inhibits bone resorption) and adrenocorticotropic hormone and oxytocin, both of which stimulate bone formation. Low oxytocin levels have been shown to potentiate bone loss induced by hypoestrinism in postmenopausal women, as well as in girls with mental anorexia. In addition to reviewing neurohormones with anabolic effects, this article also reviews neurohormones with unambiguously catabolic effects on the skeleton, such as neuropeptide Y and neuromedin U. An important aim of research in this field is the synthesis of new molecules that can stimulate osteo-anabolic or inhibiting osteo-catabolic processes., I. Žofková, P. Matucha., and Obsahuje bibliografii
a1_Osteoporosis is a serious disease characterized by high morbidity and mortality due to atraumatic fractures. In the pathogenesis of osteoporosis, except environment and internal factors, such as hormonal imbalance and genetic background, are also in play. In this study candidate genes for osteoporosis were classified according to metabolic or hormonal pathways, which regulate bone mineral density and bone quality (estrogen,RANKL/RANK/OPG axis, mevalonate, the canonical circuit and genes regulating the vitamin D system). COL1A1 and/or COL1A2 genes, which encode formation of the procollagen 1 molecule, were also studied. Mutations in these genes are well-known causes of the inborn disease‘ osteogenesis imperfecta’. In addition to this, polymorphisms in COL1A1 and/or COL1A2 have been found to be associated with parameters of bone quality in adult subjects. The authors discuss the perspectives for the practical utilization of pharmacogenetics (identification of single candidate genes using PCR) and pharmacogenomics (using genome wide association studies (GWAS) to choose optimal treatment for osteoporosis). Potential predictors of antiresorptive therapy efficacy include the following well established genes: ER, FDPS, Cyp19A1, VDR, Col1A1, and Col1A2, as well as the gene for the canonical (Wnt) pathway. Unfortunately, the positive outcomes seen in most association studies have not been confirmed b y other researchers. The controversial results could be explained by the use of different methodological approaches in individual studies (different sample size, homogeneity of investigated groups, ethnic differences, or linkage disequilibrium between genes). The key pitfall of association studies is the low variability (7-10 %) of bone phenotypes associated with the investigated genes., a2_Nevertheless, the identification of new genes and the verification of their association with bone density and/or quality (using both PCR and GWAS), remain a great challenge in the optimal prevention and treatment of osteoporosis., I. Zofkova, P. Nemcikova, M. Kuklik., and Obsahuje bibliografii