Four groups of goldfish were exposed to cadmium in a concentration of 20 mg Cd/l water under aquarium conditions. The duration of exposure was 1, 4, 7 and 15 days. It was shown that the activity of superoxide dismutase (SOD) in the red blood cells (RBC) significantly decreased after the first day of cadmium exposure. However, the SOD activity increased after 7 and 15 days of cadmium treatment. Elevated activity of catalase (CAT) was found in erythrocytes of cadmium-treated fishes after 15 days, whereas plasma GOT levels was increased after 7 and 15 days and GPT levels after 1, 4, 7 and 15 days of cadmium treatment. This was accompanied by a significant decrease of blood hemoglobin concentrations (after 15 days) and hematocrit values (after 7 and 15 days). However, the concentration of blood glucose significantly increased after 1, 4, 7 and 15 days of cadmium exposure. These results indicate that cadmium causes oxidative stress and tissue damage in the exposed fishes., R.V. Žikić, A. Š. Štajn, S. Z. Pavlović, B. I. Ognjanović, Z. S. Saičić., and Obsahuje bibliografii
Total superoxide dismutase (SOD, EC 1.15.1.1) and catalase (CAT, EC 1.11.1.6) activities in erythrocytes and the glutamic acid-oxalacetic acid-transaminase (GOT, EC 2.6.1.1) and glutamic acid-pyruvic acid-transaminase (GPT, EC 2.6.1.2) activities in the plasma were measured in experimental groups of carps (Cyprinus carpio L.) exposed to cadmium in a concentration of 20 mg Cd/1 water under aquarium conditions for 6, 12, 18 and 24 hours and in control fishes. It was shown that the total activity of SOD in the erythrocytes is significantly decreased after 12, 18 and 24 hours of cadmium exposure. Increased activities of CAT (after 24 hours) in the erythrocytes and GOT and GPT in the plasma were found in cadmium-treated fishes. At the same time the concentration of blood haemoglobin and haematocrit values were significantly diminished. These results indicate that cadmium causes oxidative stress and tissue damage in the exposed fishes.
The impact of heat shock on minimising the activity of photosystem 2 (PS2) initiating high lipid peroxidation (POL) level and consequently changes in the enzymatic-antioxidant protective system was studied in seedlings of two Egyptian cultivars of barley (Giza 124 and 125). Heat doses (35 and 45 °C for 2, 4, 6, and 8 h) decreased chlorophyll (Chl) contents coupled with an increase in Chl a/b ratio, diminished Hill reaction activity, and quenched Chl a fluorescence emission spectra. These parameters reflect the disturbance of the structure, composition, and function of the photosynthetic apparatus as well as the activity of PS2. POL level, as dependent on the balance between pro- and anti-oxidant systems, was directly correlated with temperature, exposure time, and their interaction. Heat shock caused an increase in the electric conductivity of cell membrane, and malonyldialdehyde content (a peroxidation product) coupled with the disappearance of the polyunsaturated linolenic acid (C18:3), reflecting the peroxidation of membrane lipids which led to the loss of membrane selective permeability. Moreover, it induced distinct and significant changes in activities of antioxidant enzymes. Superoxide dismutase and peroxidase activities have been progressively enhanced by moderate and elevated heat doses, but the most elevated one (45 °C for 8 h) showed a decrease in activities of both enzymes. In contrast, catalase activity was reduced with all heat shocks. and F. El-Shintinawy ... [et al.].
Winter wheat (Triticum aestivum L.) cultivars Yangmai 9 (water-logging tolerant) and Yumai 34 (water-logging sensitive) were subjected to water-logging (WL) from 7 d after anthesis to determine the responses of photosynthesis and anti-oxidative enzyme activities in flag leaf. At 15 d after treatment (DAT), net photosynthetic rate under WL was only 3.7 and 8.9 µmol(CO2) m-2 s-1 in Yumai 34 and Yangmai 9, respectively, which was much lower than in the control. Ratios of variable to maximum and variable to initial fluorescence, actual photosynthetic efficiency, and photochemical quenching were much lower, while initial fluorescence and non-photochemical quenching were much higher under WL than in control, indicating damage to photosystem 2. WL decreased activities of superoxide dismutase and catalase in both cultivars, and activity of peroxidase (POD) in Yumai 34, while POD activity in Yangmai 9 was mostly increased. The obvious decrease in the amount of post-anthesis accumulated dry matter, which was redistributed to grains, also contributed to the grain yield loss under WL. and W. Tan ... [et al.].
Elevated CO2 concentration (700 cm3 m-3, EC) inhibited chill-dependent (7 °C) depression of net photosynthetic rate of two maize hybrids with different sensitivity to low temperature. The rate of superoxide radical formation in leaves, leaf membrane injury, and the decrease in maximal quantum efficiency of photosystem 2 were successfully diminished by the treatment. The protective effect of EC toward stress conditions was prolonged at the recovery phase (20 °C). The genotypic impact on studied parameters was also notable. and R. Bączek-Kwinta, J. Kościelniak.
Liriodendron tulipifera was exposed to gradually elevated ozone concentrations of 100-300 μg kg-1 in the naturally irradiated environment chamber. During 15 d of exposure to O3, net photosynthetic rate (PN) decreased and there was large difference between the control (C) and treatment with ozone (OT), while there was no significant difference in water use efficiency. Total chlorophyll content as well as the value of fluorescence parameter Fv/Fm decreased, while antioxidant enzyme activities related to ascorbate-glutathione cycle increased after 15 d of OT. Unchanged contents of ascorbate and glutathione indirectly suggest that the species hastened the antioxidant's oxidization/reduction cycle using enzymes instead of expanding their pool against oxidative stress. and S. Z. Ryang ... [et al.].
With japonica rice 98-08, indica hybrids Shanyou 63, Gangyou 881, and X07S/Zihui 100, and sub-species hybrid Peiai 64S/9311 as materials, chlorophyll (Chl) content, Chl a fluorescence parameters, and membrane lipid peroxidation in flag leaf were measured at late developmental stages under natural conditions. Fv/Fm, qP, ΦPS2, and electron transport rate gradually decreased while qN increased conversely. Excessive photon energy led to the accumulation of active oxygen (O2-), H2O, malonyldialdehyde, and products of membrane lipid peroxidation, and resulted in reduced Chl content and early ageing subsequent to the photooxidation during flag leaf senescence. There was obvious diversification of these parameters among rice cultivars. In comparison with japonica cv. 98-08 (tolerant to photooxidation), Fv/Fm decreased in indica cv. Shanyou 63 (susceptible to photooxidation) with greater accumulation of active oxygen and a sharp drop in Chl content, which resulted in "yellowish" early ageing, and affected the filling and setting of rice grains. The mechanism for premature ageing in indica rice was related to irradiance and temperature at filling stages. On a sunny day at above 25 °C, the reaction centre of photosystem 2 (PS2) exhibited a dynamic change on reversible inactivation. Under the intense irradiance at noon, PS2 function in indica rice exhibited obvious down-regulation and photoinhibition. Under intense irradiance with lowered temperatures, PS2 resulted in photo-damage and early ageing, related to the degradation of PS2-D1 protein and the inhibition of endogenous protection systems such as the xanthophyll cycle and enzymes scavenging active oxygen. Hence for high-yield breeding, based on a good plant-type and utilising heterosis and tolerance of photooxidation, the selection of japonica rice or a sterile line with the japonica genotype as female is a strategy worthy of consideration. and Demao Jiao, Benhua Ji, Xia Li.
The plasma-lymphatic distribution of ribonuclease (RNase), superoxide dismutase (SODase), and catalase (CTase) modified by monomethoxy (polyethylene glycol) (mPEG) was studied in rats. The lymphatic bioavailability (Fl) of individual enzymes administered intravenously was determined on the basis of plasmatic and lymphatic concentration curves. It was concluded that Fl values depend on enzyme-adduct molecular weight (m.w.). The highest Fl value was found in mPEG-RNase (the lowest m.w.), medium value in mPEG-SODase (intermediate m.w.), and the lowest one in mPEG-CTase (the highest m.w.). The binding of these enzymes in the lymphatic tissue of iliac, intestinal, brachial and neck nodes was also proportional to their molecular weight. The lymphatic binding was dependent on the node localization, higher concentrations being found in the iliac and neck nodes in contrast to the other nodes (intestinal, brachial).
Plants of Brassica juncea L. cv. T-59 were supplied with 50 or 100 µM nickel (Ni50, Ni100) at 10 d after sowing (DAS), and sprayed with 28-homobrassinolide (HBR) at 20 DAS. The plants treated with Ni alone exhibited reduced growth, net photosynthetic rate, content of chlorophyll, and the activities of nitrate reductase (E.C.1.6.6.1) and carbonic anhydrase (E.C. 4.2.1.1) at observed 40 DAS, whereas, the contents of peroxidase (PER), catalase (CAT), and proline were increased. However, the spray of HBR partially neutralized the toxic effect of Ni on most of the parameters. Moreover, the treatment of HBR in association with either of the Ni concentration boosted the contents of PER and CAT in leaves and that of proline both in leaves and roots. and M. Masidur Alam ... [et al.].
We tested the mode of action of Cd on photosynthesis and activities of ATP-sulfurylase (ATP-S), catalase (CAT), superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR), and on contents of phytochelatins (PCs) and glutathione (GSH) in two cultivars of wheat (Triticum aestivum L.) PBW-343 and WH-542 differing in yield potential. Cd treatment increased Cd content and photosynthetic activity in PBW-343 more than in WH-542. The activities of APX, GR, ATP-S, and synthesis of PCs and GSH were also increased by Cd, but the CAT and SOD activities were inhibited in both the cultivars. The efficient functioning of antioxidative enzymes, production of PCs and GSH, helped in counteracting the effects of Cd namely in PBW-343, protected photosynthetic ability, and increased the tolerance to Cd. and I. Ahmad ... [et al.].