The influence of acute diabetes (8 days), induced by streptozotocin (45 mg.kg'1 body weight) on myocardial and renal antioxidative conditions was investigated. The animals were given subtherapeutical doses of insulin (Interdep 6 (J. kg'1 body weight, s.c.). Considerably increased levels of malondialdehyde (MDA), as well as of superoxide dismutase (SOD) and catalase (CAT) activity were found in the myocardium of diabetic animals. The oxidized glutathione (GSSG) level and glutathione peroxidase (GSH-PX) activity remained unchanged. The reduced glutathione (GSH) level as well as the activity of glutathione S-transferase (GST) were significantly lower. The activity of GSH-PX in the kidneys of diabetic rats increased by 60 % and that of GST by 105 %, respectively. CAT and SOD activity values were unchanged.
We tested the mode of action of Cd on photosynthesis and activities of ATP-sulfurylase (ATP-S), catalase (CAT), superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR), and on contents of phytochelatins (PCs) and glutathione (GSH) in two cultivars of wheat (Triticum aestivum L.) PBW-343 and WH-542 differing in yield potential. Cd treatment increased Cd content and photosynthetic activity in PBW-343 more than in WH-542. The activities of APX, GR, ATP-S, and synthesis of PCs and GSH were also increased by Cd, but the CAT and SOD activities were inhibited in both the cultivars. The efficient functioning of antioxidative enzymes, production of PCs and GSH, helped in counteracting the effects of Cd namely in PBW-343, protected photosynthetic ability, and increased the tolerance to Cd. and I. Ahmad ... [et al.].
To understand the interactive effects of O3 and CO2 on rice leaves; gas exchange, chlorophyll (Chl) fluorescence, ascorbic acid and glutathione were examined under acute (5 h), combined exposures of O3 (0, 0.1, or 0.3 cm3 m-3, expressed as O0, O0.1, or O0.3, respectively), and CO2 (400 or 800 cm3 m-3, expressed as C400 or C800, respectively) in natural-light gas-exposure chambers. The net photosynthetic rate (PN), maximum (Fv/Fm) and operating (Fq'/Fm') quantum efficiencies of photosystem II (PSII) in young (8th) leaves decreased during O3 exposure. However, these were ameliorated by C800 and fully recovered within 3 d in clean air (O0 + C400) except for the O0.3 + C400 plants. The maximum PSII efficiency at 1,500 μmol m-2 s-1 PPFD (Fv'/Fm') for the O0.3 + C400 plants decreased for all measurement times, likely because leaves with severely inhibited PN also had a severely damaged PSII. The
PN of the flag (16th) leaves at heading decreased under O3 exposure, but the decline was smaller and the recovery was faster than that of the 8th leaves. The Fq'/Fm' of the flag leaves in the O0.3 + C400 and O0.3 + C800 plants decreased just after gas exposure, but the Fv/Fm was not affected. These effects indicate that elevated CO2 interactively ameliorated the inhibition of photosynthesis induced by O3 exposure. However, changes in antioxidant levels did not explain the above interaction. and H. Kobayakawa, K. Imai.
The aim of the present work was to investigate a new mechanism likely contributing to the toxic action of acetaminophen, especially to explore the possible inhibition of glutathione reductase through an acetaminophen-glutathione conjugate (APAP-SG). APAP-SG conjugate was synthesized by organic synthesis and purified by column chromatography. The inhibitory effect of the conjugate on two types of glutathione reductase (from yeasts and rat hepatocytes) was tested spectrophotometrically. We found that the enzyme activity was reduced similarly after the treatment with 2.96 mM acetaminophenglutathione conjugate in both yeast and hepatocyte glutathione reductases (GR); the enzyme activity was inhibited to 52.7±1.5 % (2.4±0.3 mU/ml) in yeast GR (control activity was 5.6±0.3 mU/ml) and to 48.1±8.8 % (2.2±0.2 mU/ml) in rat hepatocytes lysate GR (control activity was 5.2±0.2 mU/ml). In addition, the enzyme activity (from hepatocytes lysate) was decreased to 79±7 %, 67±2 % and 39±7 %, in 0.37, 1.48 and 3.7 mM concentration of the conjugate, respectively. We found that glutathione reductase, the essential enzyme of the antioxidant system, was dose-dependently inhibited by the product of acetaminophen metabolism - the conjugate of acetaminophen and glutathione., T. Roušar ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
Enzymatic activities of glutathione peroxidase, glutathione-S-transferase, glutathione reductase and catalase, as we 11 as the glutathione content were measured in the brain tissue of regularly cycling rats at dioestrus, proestrus an*d estrus. The activity of glutathione peroxidase was found to be suppressed at proestrus, whereas that of catalase was increased at dioestrus. Glutathione transferase and glutathione reductase activities, as well as the glutathione comtent appeared to be stable during the oestrous cycle. These results suggest that, in the female rat, glutathione peroxidase and catalase activities in the brain tissue are influenced by the ovarian hormone status.
In a glasshouse, Bemisia tabaci infestation largely reduced response of photosynthesis to irradiance and CO2 concentration of Mikania micrantha compared with the non-infested control (C) ones. The maximum irradiance-saturated photosynthetic rate
(Pmax) and saturation irradiance (SI) of the infested M. micrantha were only 21.3 % and 6.5 % of the C-plants, respectively. B. tabaci infestation led to the reduction of contents of chlorophyll and carotenoids in M. micrantha, which was accompanied with the decrease of actual photosystem 2 (PS2) efficiency (ΦPS2), efficiency of excitation energy capture by open PS2 reaction centres (Fv'/Fm'), electron transport rate (ETR), and photochemical quenching (qP). Moreover, superoxide dismutase and catalase activities significantly decreased while proline and glutathione contents significantly increased in infested M. micrantha. Hence B. tabaci infestation not only induced direct damage of photosynthetic apparatus but also altered the antioxidant enzymes activities in M. micrantha, which might as consequences accelerate senescence of this weed. and L. L. Zhang, D. Z. Wen.
Acetaminophen overdose is the most often cause of acute liver injury. The toxic mechanism is linked to formation of an active metabolite that reacts with glutathione generating acetaminophen-glutathione conjugate (APAP-SG). This compound has been recognized to be non-toxic generally. Our preliminary results showed, however, that APAP-SG could possess a toxic effect too. Therefore, the aim of our study was to prepare, purify and to test possible toxicity of APAP-SG. We prepared APAP-SG using organic synthesis. The conjugate was purified by preparative HPLC and its structure was confirmed using mass spectrometry. Final purity of APAP-SG was >98 %. We estimated a toxic effect of APAP-SG in isolated rat liver mitochondria using a fluorescent ROS probe. We assessed ROS production in presence of complex I or complex II substrates. The increase of ROS-dependent fluorescence in presence of glutamate/malate was 104±13 % and 130±10 % in 1 mM and 5 mM APAP-SG, respectively, in comparison with controls. ROS production related to presence of complex II substrate was enhanced 4-times in APAP-SG (5 mM) treated mitochondria (compared to controls). We conclude, we proved our hypothesis that APAP-SG conjugate is able to induce a mitochondrial impairment leading to enhanced ROS production., T. Roušar, ... [et al.]., and Obsahuje seznam literatury
Acetaminophen (APAP) overdose is the most common cause of acute liver failure in humans. Non-alcoholic fatty liver disease is the most frequent chronic liver disease in developed countries. The aim of our work was to compare the effect of APAP on intact rat hepatocytes and hepatocytes isolated from steatotic liver in primary cultures. Male Wistar rats were fed with standard diet (10 % energy from fat) and high-fat diet (71 % energy from fat) for 6 weeks and then hepatocytes were isolated. After cell attachment, APAP (1; 2.5; 3.75 and 5 mM) was added to culture media (William´s E medium) and hepatocytes were cultured for up to 24 hours. APAP caused more severe dose-dependent damage of steatotic hepatocytes as documented by increased release of lactate dehydrogenase (LDH) and LDH leakage, decreased activity of cellular dehydrogenases (WST-1 test) and reduced albumin production. Intact steatotic hepatocytes contained lower amount of reduced glutathione (GSH). Treatment with APAP (1 and 2.5 mmol/l) caused more pronounced decrease in GSH in steatotic hepatocytes. ROS (reactive oxygen species) formation after 24-hour incubation was significantly higher in fatty hepatocytes using APAP at concentration of 3.75 and 5 mmol/l. Interleukin 6 (IL-6) production was elevated in 2.5 mM APAP-treated nonsteatotic and steatotic hepatocyte cultures at 8 hours, compared to appropriate controls. In conclusions, our results indicate that steatotic hepatocytes exert higher sensitivity to the toxic action of APAP. This sensitivity may be caused by lower content of GSH in intact steatotic hepatocytes and by more pronounced APAPinduced decrease in intracellular concentration of GSH., O. Kučera, ... [et al.]., and Obsahuje seznam literatury
To investigate the effect of vanadyl trehalose (VT) on oxidative stress and reduced glutathione/glutathione-Stransferase(GSH/GSTs)pathway gene expression in mouse gastrointestinal tract, as well as the protective effects of vitamin C (VC) and reduced glutathione (GSH). Thirty male Kunming mice were randomly divided into five groups: control group (group A), VT group (group B), VC + VT group (group C), GSH + VT group (group D) and VC + GSH + VT group (group E). The content of reduced glutathione (GSH) and glutathione peroxidase (GSH-Px) activity and the expressions of glutamatecysteine ligase catalytic subunit (GCLC), glutathione synthetase (GSS), regulated through glutathione reductase (GSR) and glutathione-S-transferase pi (GSTpi) in stomach and duodenum in vanadyl trehalose treated group were lower than those in group A (P<0.05). The C, D, E group can significantly improve the above indicators, but those only in the stomach in E group reached the level of the control group. Vanadyl trehalose (VT) was able to cause oxidative stress damage to the gastrointestinal tract of mice, which affects GSH content and GSH-Px activity and interferes with the normal expression of GSH/GSTs pathway. Exogenous vitamin C, reduced glutathione and the combination of the two could play a specific role in antioxidant protection and reduce the toxicity of vanadyl trehalose.
Chlorophenols, mainly used as biocides, are compounds with a wide spectrum of toxic effects including teratogenic and carcinogenic actions. In this study, the effects of 2,4-dichlorophenol (2,4-DCP) on hepatic microsomal cytochrome P-450, NADPH-cytochrome c reductase activity, liver ascorbic acid (AA) and glutathione (GSH) content were studied in guinea-pigs with a low (2 mg/day/animal) or a high (50 mg/day/animal) ascorbic acid intake. The high AA intake significantly increased liver AA and GSH levels. There was a clear-cut correlation between liver AA and GSH levels. Administration of 2,4-DCP significantly decreased cytochrome P-450 and f iADPH-cytochrome c reductase activity in hepatic microsomes isolated from guinea-pigs with the low AA intake. Such a reduction was not observed in intoxicated guinea-pigs with the high AA intake. The results suggest that AA can play a protective role in 2,4-DCP toxicity.