A space of boundary values is constructed for the minimal symmetric operator generated by an infinite Jacobi matrix in the limit-circle case. A description of all maximal dissipative, accretive and selfadjoint extensions of such a symmetric operator is given in terms of boundary conditions at infinity. We construct a selfadjoint dilation of maximal dissipative operator and its incoming and outgoing spectral representations, which makes it possible to determine the scattering matrix of dilation. We construct a functional model of the dissipative operator and define its characteristic function. We prove a theorem on the completeness of the system of eigenvectors and associated vectors of dissipative operators.
This paper deals with continuous-time Markov decision processes with the unbounded transition rates under the strong average cost criterion. The state and action spaces are Borel spaces, and the costs are allowed to be unbounded from above and from below. Under mild conditions, we first prove that the finite-horizon optimal value function is a solution to the optimality equation for the case of uncountable state spaces and unbounded transition rates, and that there exists an optimal deterministic Markov policy. Then, using the two average optimality inequalities, we show that the set of all strong average optimal policies coincides with the set of all average optimal policies, and thus obtain the existence of strong average optimal policies. Furthermore, employing the technique of the skeleton chains of controlled continuous-time Markov chains and Chapman-Kolmogorov equation, we give a new set of sufficient conditions imposed on the primitive data of the model for the verification of the uniform exponential ergodicity of continuous-time Markov chains governed by stationary policies. Finally, we illustrate our main results with an example.
The least absolute shrinkage and selection operator (LASSO) is a popular technique for simultaneous estimation and model selection. There have been a lot of studies on the large sample asymptotic distributional properties of the LASSO estimator, but it is also well-known that the asymptotic results can give a wrong picture of the LASSO estimator's actual finite-sample behaviour. The finite sample distribution of the LASSO estimator has been previously studied for the special case of orthogonal models. The aim in this work is to generalize the finite sample distribution properties of LASSO estimator for a real and linear measurement model in Gaussian noise. In this work, we derive an expression for the finite sample characteristic function of the LASSO estimator, we then use the Fourier slice theorem to obtain an approximate expression for the marginal probability density functions of the one-dimensional components of a linear transformation of the LASSO estimator.
We suggest a nonparametric version of the probability weighted empirical characteristic function (PWECF) introduced by Meintanis {et al.} \cite{meiswaall2014} and use this PWECF in order to estimate the parameters of arbitrary transformations to symmetry. The almost sure consistency of the resulting estimators is shown. Finite-sample results for i.i.d. data are presented and are subsequently extended to the regression setting. A real data illustration is also included.