Vegetation on mountains is expected to react in a highly sensitive way to climate change and species losses are predicted in the near future. By means of monitoring studies changes in species diversity can be continuously recorded. In this paper the results of a 7-year study in the Southern Alps are reported. As part of the worldwide network GLORIA (The Global Observation Research Initiative in Alpine Environments) four summits, at altitudes ranging from the treeline to the alpine-subnival ecotone (2199, 2463, 2757 and 2893 m a.s.l.) in the Dolomites (northern Italy) were studied. Sites on the four summits were used to determine the effects of climate warming and observe changes in the numbers of species of vascular plants, frequency and composition. It is hypothesized that ‘thermophilization’ is likely to occur over a period of 7 years (i.e. species from lower altitudes are expected to migrate to the summits due to climate warming). It is also hypothesized that nival, alpine-subnival and endemic species might decrease due to competitive displacement by species from lower altitudes. The summit areas were comprehensively sampled (from the highest point down to the 10 m contour line) in 2001, 2006 and 2008. In addition, 4 × 1 m2 permanent plots located 5 m below the highest summit point on the north, south, east and west sides of each summit were sampled. The results of revisiting the summits indicate that the number of species increased on all four summits, with the greatest gains (15% and 18%) recorded on the two highest summits and moderate gains (4% and 9%) on the two lower summits. Species’ frequencies within the 1 m2 plots also increased during the 2001–2008 period. A thermophilization trend was demonstrated in which species with distribution centres in the montane or tree line zones were found for the first time on three of the summits. On the lowest summit, the vigorous growth of trees and establishment of new saplings indicate an upward migration of the forest boundary. Species that disappeared from the four summits belonged to species with different altitudinal ranges; however, nival and subnival-alpine species remained. One endemic species, Potentilla nitida, disappeared from the highest summit. Further changes and clearer trends are expected in the next decade.
The invasion of Austria by the alien vascular plant Ambrosia artemisiifolia (Asteraceae) is analysed in detail, based on a survey of available records. In total, 697 records were collated. The first record for Austria is a herbarium specimen collected in 1883. Up to the end of the 1940s, records were rare and only of casual populations resulting from long-distance dispersal. Since the 1950s, the number of records has increased exponentially, and more than one third of all records (242) were collected in the last 5-year period (2001–2005) included in the survey. The first naturalized population was recorded in 1952, nearly 70 years after the first record of a casual population. Recently, the number of naturalized populations increased considerably faster than that of casual populations. Several pathways (contaminated crops and bird seed, agricultural machines, transport of soil) have contributed to the high levels of propagule pressure and this successful invasion. Ambrosia artemisiifolia has undergone a niche expansion during the invasion process. Up to 1950, most records were from sites along railway routes, whereas in the period 1950–1974 itwas mostly ruderal habitats, not associated with traffic infrastructure, which were colonized. Since the 1970s, records from roadsides have increased strongly and now dominate. Fields were colonized first in the 1970s and since then have gained in importance. The distribution of naturalized populations was related to environmental and climatic variables by means of a generalized linear model. Their distribution in Austria is closely related to temperature. Landscape variables, describing aspects of habitat availability (topography, land use, major street density) also significantly explain the current distribution of A. artemisiifolia. Suitable habitats currently occur mainly in the eastern and southeastern lowlands. We conclude that global warming will disproportionally enhance the invasion success of A. artemisiifolia in Austria, even if there is only a slight increase in temperature, as significant areas of agricultural land in Austria are currently only slightly too cool for A. artemisiifolia. The widespread occurrence of this species will have serious consequences for human health and agriculture.
Data on pupation and emergence dates for the nymphalid Purple Emperor butterfly Apatura iris have been collected at Basel, Switzerland, between 1982 and 2002. The butterfly has been shown to emerge on average 9 (males) to 12 (females) days earlier per decade, 19 and 24 days earlier respectively over the study period. Emergence dates relate strongly to spring temperatures, particularly with daily maximum temperatures for the months March to May. Temperatures for these months have increased significantly during this period (0.7°C to 1.8°C per decade). Three factors suggest that the strongest influence of the rise in spring temperatures has been on late larval instar growth and development: (i) May temperatures dominate emergence date models and larvae are feeding faster and for longer periods during this month, (ii) Salix caprea flowering date, a surrogate for bud burst, is excluded in stepwise regression models with temperatures and years suggesting that tree phenology may be less important than temperature effects on later development, and (iii) convergence of female and male emergence dates over time points to limits on earlier feeding in protandrous males. A negative consequence observed with earlier emergence dates is lethal extra broods.
Historical data sources on abundance of organisms are valuable for determining responses of those organisms to climate change and coincidence of changes amongst different organisms. We investigate data on the general abundance of Lepidoptera over an 89 year period 1864-1952. We related abundance to monthly mean temperature and precipitation and the winter North Atlantic Oscillation (NAO) index, and to numbers of migrants from an independent source. Abundances of Lepidoptera were significantly positively correlated with current year temperatures for May to September and November and significantly negatively correlated with temperatures in January. Numbers were also negatively correlated with rainfall for April and May and annual total of the current year and with August in the previous year. Abundance of Lepidoptera decreased significantly with an increasing winter NAO index. Increased overall abundance in Lepidoptera coincided significantly with increased numbers of migrants. The climate associations were very similar to those previously reported for butterfly data collected by the British Butterfly Monitoring Scheme; although warm and drier summers were generally beneficial to Lepidoptera populations, wet summers and winters and mild winters were not. We discuss the implications for Lepidoptera biology and populations in regions of Britain in the face of projected climate changes.
Responses of insects to recent climate change have been well documented in a number of taxa, but not in wasps. This study examined shifts in phenology of the two most important wasp species (Vespa crabro and Vespula germanica) in Poland over the last three decades. Both species showed similar temporal trends, advancing their phenology after the early 1980s, but this pattern was detected only for workers not for the appearance of queens. The appearance times for V. germanica were negatively related to mean April temperature, appearing earlier in years with warmer springs, and positively related to precipitation in April. The studied species advanced aspects of their phenology, but linking this to temperature was not achieved for V. crabro suggesting that we have to pay more attention to the life history traits of the study organisms.
The number of species of migratory Lepidoptera (moths and butterflies) reported each year at a site in the south of the UK has been rising steadily. This number is very strongly linked to rising temperatures in SW Europe. It is anticipated that further climate warming within Europe will increase the numbers of migratory Lepidoptera reaching the UK and the consequences of this invasion need urgent attention.
The paper discusses changes in the hydrological regime of high mountain Lake Morskie Oko located in the Tatra Mountains, in the Tatra Mountains National Park, a UNESCO biosphere reserve (MaB). According to the research conducted in the years 1971–2015, its water stages decreased by 3.5 cm·dec–1, mean annual water temperature increased by 0.3ºC·dec–1 and the duration of ice phenomena and ice cover was reduced by 10 day·dec–1. No considerable changes in maximum values of ice cover thickness were recorded. Such tendencies are primarily caused by long-term changes in climatic conditions – air temperature and atmospheric precipitation. The hydrological regime of the lake was also determined by changes in land use in the lake’s catchment and its location in high mountains.
Evidence from the only woodland study in the U.K. of the non-native edible dormouse shows (using nest boxes inspected monthly), that whilst some or much breeding occurs in most years, non-breeding years also occur. This is understood to relate to the number of tree species flowering in spring and the amount of flower production. Morris & Morris (2010) used a small sample to show that some adult animals do not appear in the nest box inspection records during the non-breeding years, but are present during the next breeding year. We have subsequently refined and increased the database, collating information on a sample of 222 glis (136 female, 86 male) known to be alive for between 5 and 13 years during a continuous study period of 18 years. The number of old animals (living to at least five years) recorded in nest boxes is significantly different between years of breeding and non-breeding with up to 90 % absent. There is no evidence that they move elsewhere in the isolated wood. Both males and females displayed this trait. The paper discusses alternative explanatory options interpreted from this. The applied science impact is that if 18 month hibernation is proven the time and cost implications for population control planning are severe. Future research is aimed at demonstrating the reality.
1_Urbanisation is an important cause of species extinctions. Although urban water systems are also highly modified, studies on aquatic or semi-aquatic organisms are rare. The aim of this study is to identify the factors that determine species richness of Odonata in 22 Central European cities and along an urban-rural gradient within six of them. With 64 indigenous species in total and an average of 33 species per city, the species richness of Odonata in Central European cities is comparatively high. A generalised linear model indicates that species richness is positively related to city area. Additional predictors are climatic variables (temperature amplitude, sunshine duration and July temperature) and the year last studied. Since most cities are usually located in areas with naturally high habitat heterogeneity, we assume that cities should be naturally rich in dragonflies. The role of city area as a surrogate for habitat and structural richness most likely explains why it is strongly associated with Odonata species richness. The relationship between species richness and the climatic variables probably reflects that Odonata species richness in Central Europe is limited by warm and sunny conditions more than by availability of water. The temporal effect (the year last studied) on species richness is likely to be a consequence of the recent increase in Mediterranean species associated with global warming. Urbanisation clearly has an adverse effect on the species diversity of Odonata. Species richness increases along a gradient from the centre of a city to the rural area and is significantly highest in rural areas. This pattern probably reflects a gradient of increasing habitat quality from the centre of cities to rural areas. Moreover, the number of water bodies is generally very low in the city centres., 2_Based on our results, we make recommendations for increasing the abundance and number of species of dragonflies in cities., Christoph Willigalla, Thomas Farmann., and Obsahuje seznam literatury
Factors which have a negative impact on mammal populations were reviewed for all 83 native species occurring in Germany today. Forest management affects most species of the mammal fauna as well as of the sub-groups of Red List species and of species for which a special responsibility for their conservation has been determined in Germany. This is because a high proportion of German mammals are forest-dwelling, which means they are exposed to current harmful forestry practices such as selective harvest of ancient trees. The review also highlights population reduction by direct take of individuals (legal, illegal or accidental) and habitat fragmentation as major conservation problems affecting many species. The analysis of negative impact factors underline the importance of ongoing „traditional“ conservation measures. However, the result of climate change and invasive alien species being less important for conservation, as only few species are affected so far in Germany, is doubtful. The impacts of these two factors may be underestimated owing to a general lack of data. To ensure that conservation problems can be identified and appropriate measures are taken, the implementation of a mammal monitoring programme and specific research projects are needed. International cooperation might be helpful to overcome national shortcomings in mammal conservation in Germany and other European countries.