Two principal pheromones are essential in all cockroach sexual behavioral sequences: the volatile sex attractant pheromone released by one partner for long distance attraction and an aphrodisiac sex pheromone produced exclusively by male tergal glands for female mounting and feeding behavior. In the Blaberinae subfamily, the female produces volatile sex attractant pheromones and the male, aphrodisiacs. A close relationship is known to exist between the release of these pheromonal signals from specific glands and the corresponding behaviors (female calling posture and male wing raising). However, in this cockroach group, no data on the glands secreting sex attractant pheromones and aphrodisiacs have been available until now. In seven species of the Blaberinae subfamily: Blaberus colosseus, B. craniifer, B. discoidalis, Blaptica interior, Byrsotria fumigata, Eublaberus distanti and E. posticus; one species of the Zetoborinae subfamily: Schultesia lampyridiformis; one species of the Epilamprinae subfamily: Epilampra maya and one species of the Panesthiinae subfamily, Panesthia sp., the females possess all pygidial glands on the 10 th tergite and the males have tergal glands situated anteriorly, generally on tergites T1 and T2. These glands are formed of type 3 glandular units with two cells, i.e. glandular and canal cells. The uniform presence of female pygidial glands and male tergal glands explains their relationship with their corresponding sexual behaviors.
German cockroaches spend most of the day in aggregations within shelters, which they leave in nocturnal foraging trips; cockroaches are rarely seen outside shelters during daylight hours. However, when population density exceeds shelter availability, diurnal aggregations form in exposed, unsheltered locations. To determine if shelter availability affects fitness of B. germanica, we reared cohorts of nymphs in laboratory arenas with or without shelters, and measured reproduction and longevity of tagged adults. When shelters were available in arenas, nymphs developed faster, adults gained more body mass, and females produced more fertile oothecae than when arenas lacked shelters. Therefore, shelter alone has a significant positive effect on growth and reproduction of B. germanica, and reducing or eliminating shelters should affect population growth of B. germanica in residential and industrial settings. and César Gemeno, Gregory M. Williams, Coby Schal.