The main goal of this paper is to construct fuzzy connectives on algebraic completely distributive lattice(ACDL) by means of extending fuzzy connectives on the set of completely join-prime elements or on the set of completely meet-prime elements, and discuss some properties of the new fuzzy connectives. Firstly, we present the methods to construct t-norms, t-conorms, fuzzy negations valued on ACDL and discuss whether De Morgan triple will be kept. Then we put forward two ways to extend fuzzy implications and also make a study on the behaviors of R-implication and reciprocal implication. Finally, we construct two classes of infinitely ⋁-distributive uninorms and infinitely ⋀-distributive uninorms.
The notion of a partially ordered partial abelian monoid is introduced and extensions of partially ordered abelian monoids by partially ordered abelian groups are studied. Conditions for the extensions to exist are found. The cases when both the above mentioned structures have the Riesz decomposition property, or are lattice ordered, are treated. Some applications to effect algebras and MV-algebras are shown.