In this paper the control of robotic manipulation is investigated. Manipulation system analysis and control are approached in a general framework. The geometric aspect of manipulation system dynamics is strongly emphasized by using the well developed techniques of geometric multivariable control theory. The focus is on the (functional) control of the crucial outputs in robotic manipulation, namely the reachable internal forces and the rigid-body object motions. A geometric control procedure is outlined for decoupling these outputs and for their perfect trajectory tracking. The control of robotic manipulation is investigated. These are mechanical structures more complex than conventional serial-linkage arms. The robotic hand with possible inner contacts is a paradigm of general manipulation systems. Unilateral contacts between mechanical parts make the control of manipulation system quite involved. In fact, contacts can be considered as unactuated (passive) joints. The main goal of dexterous manipulation consists of controlling the motion of the manipulated object along with the grasping forces exerted on the object. In the robotics literature, the general problem of force/motion control is known as "hybrid control". This paper is focused on the decoupling and functional controllability of contact forces and object motions. The goal is to synthesize a control law such that each output vector, namely the grasping force and the object motion, can be independently controlled by a corresponding set of generalized input forces. The functional force/motion controllability is investigated. It consists of achieving force and motion tracking with no error on variables transients. The framework used in this paper is the geometric approach to the structural synthesis of multivariable systems.