In this paper we introduce and study new concepts of convergence and adherent points for fuzzy filters and fuzzy nets in the light of the $Q$-relation and the $Q$-neighborhood of fuzzy points due to Pu and Liu [28]. As applications of these concepts we give several new characterizations of the closure of fuzzy sets, fuzzy Hausdorff spaces, fuzzy continuous mappings and strong $Q$-compactness. We show that there is a relation between the convergence of fuzzy filters and the convergence of fuzzy nets similar to the one which exists between the convergence of filters and the convergence of nets in topological spaces.