Inconsistent information from different modalities can be delusive for perception. This phenomenon can be observed with simultaneously presented inconsistent numbers of brief flashes and short tones. The conflict of bimodal information is reflected in double flash or fission, and flash fusion illusions, respectively. The temporal resolution of the vision system plays a fundamental role in the development of these illusions. As the parallel, dorsal and ventral pathways have different temporal resolution we presume that these pathways play different roles in the illusions. We used pathway-optimized stimuli to induce the illusions on separately driven visual streams. Our results show that both pathways support the double flash illusion, while the presence of the fusion illusion depends on the activated pathway. The dorsal pathway, which has better temporal resolution, does not support fusion, while the ventral pathway which has worse temporal resolution shows fusion strongly., P. Kaposvári, A. Bognár, P. Csibri, G. Utassy, Gy. Sáry., and Obsahuje bibliografii
It has become increasingly apparent in recent years that there are important differences of many cardiovascular disorders including ventricular tachycardias in men and women. Nevertheless, so far just few studies have addressed possible gender differences in electrophysiological characteristics of idiopathic ventricular tachycardia from right ventricular outflow tract (RVOT-VT), other than epidemiological ones. This study explored possible gender differences in electrophysiological characteristics and catheter ablation outcome in RVOT-VT patients. Ninety-three patients (mean age 38.7±15.5 years, 30 males) with idiopathic RVOT-VT were enrolled and analyzed in our study. Male patients had longer QRS width (99.9±19.4 ms vs. 88.4±20.7 ms, p=0.02). Female patients had lower right ventricular mean voltage (3.0±0.7 mV vs. 3.7±0.9 mV, p=0.03), and more low voltage zone over the right ventricular outflow tract free wall (27.0 % vs. 6.7 %, p=0.02). Eighty-one patients passed catheter ablation (23 males). The acute success rate, repeated catheter ablation rate and VT recurrence rate were similar in both genders. The present study provides evidence of the gender differences in electrophysiological findings in patients with idiopathic RVOT-VT. Studies on gender-specific differences in arrhythmia could lead to a better understanding of its mechanism(s) and provide valuable information for the development of optimal treatment strategies., S.-G. Yang, M. Mlček, O. Kittnar., and Obsahuje bibliografii
GIP (glucose dependent insulinotr ophic polypeptide), originally identified as an incretin peptide synthesized in the gut, has recently been identified, along with its receptors (GIPR), in the brain. Our objective was to investigate the role of GIP in hypothalamic gene expression of biomarkers linked to regulating energy balance and feeding behavi or related neurocircuitry. Rats with lateral cerebroventricular cannulas were administered 10 μg GIP or 10 μl artificial cerebrospinal fluid (aCSF) daily for 4 days, after which whole hypothalami were collected. Real time Taqman™ RT-PCR was used to quantitatively compare the mRNA expression levels of a set of genes in the hypothalamus. Administration of GIP resulted in up-regulation of hypothalamic mRNA levels of AVP (46.9±4.5 %), CART (25.9±2.7 %), CREB1 (38.5±4.5 %), GABRD (67.1±11 %), JAK2 (22.1±3.6 %), MAPK1 (33.8±7.8 %), NPY (25.3±5.3 %), OXT (49.1±5.1 %), STAT3 (21.6±3.8 %), and TH (33.9±8.5 %). In a second experiment the same set of genes was evaluated in GIPR -/- and GIPR +/? mice to determine the effect of lack of GIP stimulation on gene expression. In GIPR -/- mice expressions of the following genes were down-regulated: AVP (27. 1±7.5 %), CART (28.3±3.7 %), OXT (25.2±5.8 %), PTGES (23.9±4.5 %), and STAT3 (8.8±2.3 %). These results suggest that AVP, CART, OXT and STAT3 may be involved in energy balance-related hypothalamic circuits affected by GIP., S. Ambati ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
The aim of the present work was to investigate a new mechanism likely contributing to the toxic action of acetaminophen, especially to explore the possible inhibition of glutathione reductase through an acetaminophen-glutathione conjugate (APAP-SG). APAP-SG conjugate was synthesized by organic synthesis and purified by column chromatography. The inhibitory effect of the conjugate on two types of glutathione reductase (from yeasts and rat hepatocytes) was tested spectrophotometrically. We found that the enzyme activity was reduced similarly after the treatment with 2.96 mM acetaminophenglutathione conjugate in both yeast and hepatocyte glutathione reductases (GR); the enzyme activity was inhibited to 52.7±1.5 % (2.4±0.3 mU/ml) in yeast GR (control activity was 5.6±0.3 mU/ml) and to 48.1±8.8 % (2.2±0.2 mU/ml) in rat hepatocytes lysate GR (control activity was 5.2±0.2 mU/ml). In addition, the enzyme activity (from hepatocytes lysate) was decreased to 79±7 %, 67±2 % and 39±7 %, in 0.37, 1.48 and 3.7 mM concentration of the conjugate, respectively. We found that glutathione reductase, the essential enzyme of the antioxidant system, was dose-dependently inhibited by the product of acetaminophen metabolism - the conjugate of acetaminophen and glutathione., T. Roušar ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
Multidrug resistance of cancer cells is often accompanied by the (over)expression of integral plasma membrane P-glycoprotein, an ATP-dependent transport pump for diverse unrelated compounds. The glutathione detoxification system represents another mechanism that may be involved in multidrug resistance. In the multidrug-resistant L1210/VCR cell line obtained by long-term adaptation of parental L1210 cells to vincristine, an increased expression of P-glycoprotein has previously been established. In this paper, we investigated if the glutathione detoxification system is also involved in the multidrug resistance of these cells. L1210/VCR cells with resistance induced by adaptation to vincristine were also found to be cross-resistant to vinblastine, actinomycin D, mitomycin C, doxorubicin and cyclophosphamide. The resistance of the above cells to vincristine and doxorubicin was accompanied by a depression of drug accumulation (which has not yet been established for other drug). L1210/VCR cells are able to survive better than sensitive cells under conditions when glutathione was depleted by L-buthionine sulfoximine. Nevertheless, L-buthionine sulfoximine did not influence the resistance of L1210/VCR cells to vincristine. Moreover, the presence of sublethal concentrations of cytostatics neither changed the IC50 value of resistant cells to L-buthionine sulfoximine nor the cytoplasmic activity of glutathione S-transferase, the crucial enzyme of glutathione detoxification system. All the above findings indicate that the glutathione detoxification system is not involved in the mechanisms that ensure the multidrug resistance phenotype of L1210/VCR cells., V. Boháčová, J. Kvačkajová, M. Barančík, Z. Drobná, A. Breier., and Obsahuje bibliografii
The role of gossypol in the cumulus expansion of oocyte-cumulus complexes (OCC) isolated from large antral porcine follicles was investigated. Marked suppression of cumulus expansion stimulated with follicle-stimulating hormone (FSH) and epidermal growth factor (EGF) was observed in the presence of different concentrations of gossypol. Comparable inhibitory effects were obtained in the presence of NO donor, S-nitroso-N-acetylpenicillamine or sodium nitroprusside, suggesting that the inhibitory effect of gossypol may be mediated via NO generation. The inhibitory effect of gossypol on cumulus expansion of OCC was accompanied by inhibition of progesterone secretion of OCC and the decrease of [125I]EGF binding to granulosa cells., J. Kolena, S. Vršanská, E. Nagyová, M. Ježová., and Obsahuje bibliografii
The effects of combined administration of two drugs elevating extracellular adenosine, namely dipyridamole (DP) and adenosine monophosphate (AMP), and granulocyte colony-stimulating factor (G-CSF) on hemopoietic stem cells in vivo were investigated. The experiments were performed on mice using the endogenous spleen colony formation in gamma-irradiated animals as an endpoint. The results have shown that DP and AMP act additively with G-CSF to enhance spleen colony formation and thus the erythroid repopulation of the spleen. These findings indicate that the signaling pathways of G-CSF and drugs elevating extracellular adenosine can interact at the level of primitive hemopoietic stem cells. The enhancement of hemopoiesis-stimulating effects of G-CSF by DP and AMP, which are low-priced and clinically available drugs, could improve the cost-effectiveness of the therapy with G-CSF., M. Hofer, M. Pospíšil, J. Netíková, V. Znojil, J. Vácha., and Obsahuje bibliografii
The purpose of this study was to investigate the influence of heat treatment on glucocorticoid (GC) -induced myopathy. Eight -week - old Wistar rats were randomly assigned to the control, Dex, and Dex + Heat groups. Dexamethasone (2 mg/kg) was injected subcutaneously 6 days per week for 2 weeks in the Dex and Dex + Heat group. In the Dex + Heat group, heat treatment was performed by immersing hindlimbs in water at 42 °C for 60 min, once every 3 days for 2 weeks. The extensor digitorum longus muscle was extracted following 2 weeks of experimentation. In the Dex + Heat group, muscle fiber diameter, capillary/muscle fiber ratio, and level of heat shock protein 72 were significantly higher and atrogene expression levels were significantly lower than in the D ex group. Our results suggest that heat treatment inhibits the development of GC -induced myopathy by decreas ing atrogene expression and increasing angiogenesis., Y. Morimoto, Y. Kondo, H. Kataoka, Y. Honda, R. Kozu, J. Sakamoto, J. Nakano, T. Origuchi, T. Yoshimura, M. Okita., and Obsahuje bibliografii
In this study, lipoic acid and heat shock treatments were applied to C2C12 myotubes and Sprague-Dawley rats to investigate changes in the heat shock protein 70 (HSP70) and glucose transporter 4 (GLUT4) in 4 different skeletal muscle groups. The results of western blotting indicated that treatment of lipoic acid for 24 h, heat-shock and combined lipoic acid and heat-shock which all increased the level of HSP70 substantially in C2C12 myotubes. However, either lipoic acid or heat-shock did not increase the level of GLUT4 in C2C12 myotubes. In an in vitro migration assay, lipoic acid increased wound migration only when it was applied for 3 h. Moreover, our in vivo results revealed that lipoic acid did not increase HSP70 and GLUT4 in all 4 different skeletal muscles. Furthermore, heat-shock increased HSP70 in all 4 different muscle groups, and heat-shock treatment alone increased the GLUT4 in the soleus muscle only, suggesting that the GLUT4 increased by heat-shock was slow-twitch muscle specific. Collectively, our results indicated that heat-shock is critical factor that modulates GLUT4 and HSP70 in the skeletal muscle of rats., P.-F. Wu, S.-C. Luo, L.-C. Chang., and Obsahuje bibliografii