We study some geometric properties associated with the t-geometric means A ♯_{t} B:= A^{1/2}(A^{-1/2}BA^{-1/2})^{t} A^{1/2}of two n × n positive definite matrices A and B. Some geodesical convexity results with respect to the Riemannian structure of the n × n positive definite matrices are obtained. Several norm inequalities with geometric mean are obtained. In particular, we generalize a recent result of Audenaert (2015). Numerical counterexamples are given for some inequality questions. A conjecture on the geometric mean inequality regarding m pairs of positive definite matrices is posted., Trung Hoa Dinh, Sima Ahsani, Tin-Yau Tam., and Obsahuje seznam literatury