In this paper a new truss element with variation of the cross-sectional area and/or Young modulus along its axis is presented which can be used for geometrically non-linear analysis of uniaxially graded bars. The non-linear stiffness matrices of
this element contain the unknown nodal displacements. The non-incremental Lagrangian approach, without any linearisation, has been used for deriving the stiffness matrices. The new shape functions of the beam element have been established which
describe the stiffness variation along the element length very accurately. Numerical experiments have been performed - the large displacement of Von Mises two truss structure with varying stiffness, which results confirm the effectiveness and accuracy
of the new truss element. In addition, this element fulfils the equilibrium equations in both the global and local sense. and Obsahuje seznam literatury