The central-marginal model is widely accepted in chromosomally polymorphic species of Drosophila. In fact, geographically and ecologically central populations of Drosophila show higher levels of polymorphism for paracentric inversions, whereas marginal populations tend to be monomorphic. This fact has been variously explained. Chromosomal polymorphisms in grasshoppers have also been attributed to show such geographical structuring, as in the case of the South-American grasshopper Dichroplus pratensis Bruner (Orthoptera: Acrididae). However, in three other cases involving Acrididae – Leptysma argentina Bruner, Trimerotropis pallidipennis (Burmeister) and Cornops aquaticum (Bruner), it is clear that chromosomal polymorphisms (sometimes with a wide extension over the Argentine area) do not conform to this pattern, and show instead clear correlations with environmental variables, especially minimum temperature, showing low or null frequencies of the rearrangements at one extreme of the environmental gradient and with high or fixed frequencies at the other. Furthermore, this correlation with temperature might also be true in the case of D. pratensis. These aforementioned examples emphasise the dangers of over-generalization when discussing chromosomal polymorphisms, and suggests that such polymorphisms should be considered very much in a case-specific manner in terms of the particular genetic system under study., Pablo C. Colombo., and Obsahuje seznam literatury
The water-hyacinth grasshopper, Cornops aquaticum, occurs in freshwater environments in the New World between latitudes 23°N and 35°S. At the southernmost margin of this distribution the populations are polymorphic for three centric fusions (Robertsonian translocations). The frequencies of these chromosome rearrangements increase southwards and the recombination in structural homozygotes and heterozygotes diminishes both along the middle and lower courses of the Paraná River. In the present paper we report a similar cline along the southward flowing Uruguay River. In addition, we report the morphological effects of two of these centric fusion polymorphisms, namely the fusions between chromosomes 2 and 5 of the standard complement (fusion 2/5) and chromosomes 3 and 4 (fusion 3/4) and extend this study to the Uruguay River. There is a strong inverse correlation of fusion frequency with temperature, which indicates that these polymorphisms may be related to increased tolerance of colder climates in this originally tropical species, or some other correlated variable. This study is a further example of chromosomal clines correlated with latitude and is one of a few examples of chromosome polymorphisms associated with phenotypic effects. Finally, it indicates ways of using this species for controlling pests., Pablo C. Colombo, María I. Remis., and Obsahuje bibliografii