We compared the effects of adaptation to intermittent high altitude (IHA) hypoxia of various degree and duration on ischemia-induced ventricular arrhythmias in rats. The animals were exposed to either relatively moderate hypoxia of 5000 m (4 or 8 h/day, 2-3 or 5-6 weeks) or severe hypoxia of 7000 m (8 h/day, 5-6 weeks). Ventricular arrhythmias induced by coronary artery occlusion were assessed in isolated buffer-perfused hearts or open-chest animals. In the isolated hearts, both antiarrhythmic and proarrhythmic effects were demonstrated depending on the degree and duration of hypoxic exposure. Whereas the adaptation to 5000 m for 4 h/day decreased the total number of premature ventricular complexes (PVCs), extending the daily exposure to 8 h and/or increasing the altitude to 7000 m led to opposite effects. On the contrary, the open-chest rats adapted to IHA hypoxia exhibited an increased tolerance to arrhythmias that was even more pronounced at the higher altitude. The distribution of PVCs over the ischemic period was not altered by any protocol of adaptation. It may be concluded that adaptation to IHA hypoxia is associated with enhanced tolerance of the rat heart to ischemic arrhythmias unless its severity exceeds a certain upper limit. The opposite effects of moderate and severe hypoxia on the isolated hearts cannot be explained by differences in the occluded zone size, heart rate or degree of myocardial fibrosis. The proarrhythmic effect of severe hypoxia may be related to a moderate left ventricular hypertrophy (27 %), which was present in rats adapted to 7000 m but not in those adapted to 5000 m. This adverse effect can be overcome by an unknown protective mechanism(s) that is absent in the isolated hearts., G. Asemu, J. Neckář, O. Szárszoi, F. Papoušek, B. Ošťádal, F. Kolář., and Obsahuje bibliografii
An increase in brain superoxide dismutase activity was found in rats exposed to high altitude hypoxia (7000 m, 30 min daily for five days) and ascorbic acid treatment (1 mg.g'1 daily s.c.) while no significant change was observed after high altitude hypoxia or ascorbic acid alone.
Control (physiological saline treated) and ascorbic acid (AA) treated (1 mg . g'1 b.w. one hour before exposure) 18-day-old rats were exposed for 1 hour to high altitude in a hypobaric chamber and the mean lethal altitudes were calculated. AA displayed a protective effect, so that in two identical experiments the mean lethal altitude was 10 900 and 10 150 m in controls, while it was 11 500 and 11 450 m in AA treated animals.
Previous investigations revealed that most of the fluid regulating hormones showed no consistent relationship to the hypoxic diuretic response (HDR). In this study we examined if adrenomedullin (AM), a hypoxia-mediated diuretic/natriuretic peptide is connected to HDR. Thirty-three persons were examined at low altitude (LA), on the third exposure day at 3440 m (medium altitude, MA) and on the fourteenth day at 5050 m (high altitude, HA). Nocturnal diuresis rose from 460 ml [interquartile range 302 ml] at LA to 560 [660] ml at MA to 1015 [750] ml at HA (p<0.005). Sodium excretion was similar at LA and MA (41.8 [27.0] vs. 41.4 [28.4] mM) and increased to 80.2 [29.1] mM at HA (p<0.005). Urinary AM excretion was 7.9 [3.9] at LA, 7.5 [5.7] pM at MA, and increased to 10.5 [5.1] pM (p<0.05) at HA. Urinary AM excretion was correlated to diuresis (r=0.72, p<0.005) and sodium excretion (r=0.57, p<0.005). Plasma AM concentration rose from 16.4 [3.1] to 18.8 [4.9] pM/l at MA (p<0.005) and to 18.3 [4.3] pM/l at HA (p<0.005). Plasma AM concentration and urinary AM excretion were not correlated, neither were plasma AM concentration and diuresis or natriuresis. Our data suggest the involvement of increased renal AM production in the pathophysiology of high altitude fluid and sodium loss., B. Haditsch, A. Roessler, H. G. Hinghofer-Szalkay., and Obsahuje bibliografii a bibliografické odkazy