Hmyzí hormonální soustava se skládá z několika typů žláz produkujících tři různé druhy hormonů – ekdysteroidy, juvenilní hormony a peptidické neurohormony. Struktura, funkční koordinace a vzájemné vztahy v této soustavě představují dobře organizovaný řídicí systém, který v zásadě pracuje stejně jako hormonální soustava obratlovců: řídí prakticky všechny životní projevy hmyzu. Jedna skupina hmyzích metabolických neurohormonů – adipokinetické hormony – hraje důležitou roli v odpovědi organismu na stresové podmínky. Tyto hormony zajišťují mobilizaci energetických zdrojů, stimulují pohybovou aktivitu, zvyšují činnost srdce, aktivují imunitní systém a nedůležité procesy odsouvají na pozdější dobu. Touto koordinovanou činností umožňují hmyzímu organismu vyrovnávat se s nepříznivými podmínkami vnějšího prostředí a podílet se tak na udržování homeostázy vnitřního prostředí., The insect hormonal system consists of several types of endocrine glands which produce three different hormones – ecdysteroids, juvenile hormones and peptidic neurohormones. The structure, functional coordination and mutual relationships within the system are a well organised control system resembling the hormonal system of vertebrates: it controls practically all aspects of insect life. One group of insect metabolic neurohormones called adipokinetic hormones plays an important role in the defence of the insect organism against stress. Those hormones control energy mobilization, stimulate locomotory activity and the heart beat, activate the immune system and postpone less important processes for later. That sophisticated system helps the insect organism to cope with negative environmental conditions and to retain the body homeostasis., and Dalibor Kodrík.
Hormones exert many actions in the brain. Their access and effects in the brain are regulated by the blood-brain barrier (BBB). Hormones as other substances may enter the brain and vice versa either by paracellular way requiring breaching tight junctions stitching the endothelial cells composing the BBB, or by passage through the cells (transcellular way). Hormones influence both ways through their receptors, both membrane and intracellular, present on/in the BBB. In the review the main examples are outlined how hormones influence the expression and function of proteins forming the tight junctions, as well as how they regulate expression and function of major protein transporters mediating transport of various substances including hormone themselves., R. Hampl, M. Bičíková, L. Sosvorová., and Obsahuje bibliografii
Neurohumoral substances and their receptors play a major part in the complex regulation of gastrointestinal motility and have therefore been the predominant targets for drug development. The numerous receptors involved in motility are located mainly on smooth muscle cells and neuronal structures in the extrinsic and intrinsic parts of the enteric nervous system. Within this system, receptor agonists and antagonists interacts directly to modify excitatory or inhibitory signals. In view of this complexity it is not surprising that our knowledge about the mechanisms of actions of the various neurohormones and drugs affecting gut motility has been rather fragmented and incomplete. However, recently substantial progress has been achieved, and drug therapy for gut dysmotility is emerging, based primarily on neurohumoral receptors. This paper presents a selective review of the neurohumoral regulatory mechanisms of gastrointestinal motility. In this context, the physiology and pharmacology of the smooth muscle cells, gastrointestinal motility and dysmotility, the enteric nervous system, gastrointestinal reflexes, and serotonin is presented. Further investigation and understanding of the transmitters and receptors involved in especially the reflex activation of peristalsis is crucial for the development of novel therapies for motility disorders., M. B. Hansen., and Obsahuje bibliografii
Great progress has recently been made in cryobiology. One field, however, has been neglected: the temporal sequence of the effects of photoperiod and temperature, and their relative importance in cold hardening. This is relevant to the question of importance of diapause in cold-hardiness. Denlinger (1991) outlined the categories of such relations and stressed a great need for further detailed research. A survey of studies done over the past decade revealed many gaps in the evidence and the ambiguous nature of the data on the photoperiodic regulation of cold-hardiness. We hope that this review will stimulate further research in this field. Among several directions where research is most needed we have stressed (1) simultaneous recording of changes in survival and dynamics of suspected cryoprotectants (stressed also by Danks, 1996), (2) checking the regulation of different phases of cold hardening, and (3) discrimination between direct and indirect (mediated via neuroendocrine system) effects of environmental cues on cold hardening.
The action of the medicinal plant Tribulus terrestris (TT) on bovine ovarian cell functions, as well as the protective potential of TT against xylene (X) action, remain unknown. The aim of the present in vitro study was to elucidate the influence of TT, X and their combination on basic bovine ovarian cell functions. For this purpose, we examined the effect of TT (at doses of 0, 1, 10, and 100 ng/ml), X (at 20 μg/ml) and the combination of TT + X (at these doses) on proliferation, apoptosis and hormone release by cultured bovine ovarian granulosa cells. Markers of proliferation (accumulation of PCNA), apoptosis (accumulation of Bax) and the release of hormones (progesterone, testosterone and insulin-like growth factor I, IGF-I) were analyzed by quantitative immunocytochemistry and RIA, respectively. TT addition was able to stimulate proliferation and testosterone release and inhibit apoptosis and progesterone output. The addition of X alone stimulated proliferation, apoptosis and IGF-I release and inhibited progesterone and testosterone release by ovarian cells. TT was able to modify X effects: it prevented the antiproliferative effect of X, induced the proapoptotic action of X, and promoted X action on progesterone but not testosterone or IGF-I release. Taken together, our observations represent the first demonstration that TT can be a promoter of ovarian cell functions (a stimulator of proliferation and a suppressor of apoptosis) and a regulator of ovarian steroidogenesis. X can increase ovarian cell proliferation and IGF-I release and inhibit ovarian steroidogenesis. These effects could explain its antireproductive and cancer actions. The ability of TT to modify X action on proliferation and apoptosis indicates that TT might be a natural protector against some ovarian cell disorders associated with X action on proliferation and apoptosis, but it can also promote its adverse effects on progesterone release.
Resveratrol is a polyphenol found in different plant species and having numerous health-promoting properties in animals and humans. However, its protective action against deleterious effects of ethanol is poo rly elucidated. In the present study, the influence of resveratrol (10 mg/kg/day) on some hormones and metabolic parameters was determined in rats ingesting 10 % ethanol solution for two weeks. Blood levels of insulin, glucagon and adiponectin were affecte d by ethanol, however, resveratrol partially ameliorated these changes. Moreover, in ethanol drinking rats, liver lipid accumulation was increased, whereas resveratrol was capable of reducing liver lipid content, probably due to decrease in fatty acid synt hesis. Resveratrol decreased also blood levels of triglycerides and free fatty acids and reduced γ-glutamyl transferase activity in animals ingesting ethanol. These results show that resveratrol, already at low dose, alleviates hormonal and metabolic changes induced by ethanol in the rat and may be useful in preventing and treating some consequences o f alcohol consumption., K. Szkudelska, M. Deniziak, P. Roś, K. Gwóźdź, T. Szkudelski., and Obsahuje bibliografii
This review focuses on current knowledge of leptin biology and the role of leptin in various physiological and pathophysiological states. Leptin is involved in the regulation of body weight. Serum leptin can probably be considered as one of the best biological markers reflecting total body fat in both animals and humans. Obesity in man is accompanied by increased circulating leptin concentrations. Gender differences clearly exist. Leptin is not only correlated to a series of endocrine parameters such as insulin, glucocorticoids, thyroid hormones, testosterone, but it also seems to be involved in mediating some endocrine mechanisms (onset of puberty, insulin secretion) and diseases (obesity, polycystic ovary syndrome). It has also been suggested that leptin can act as a growth factor in the fetus and the neonate., R. Janečková., and Obsahuje bibliografii
The high prevalence of obesity and related metabolic complications has inspired research on adipose tissues. Three kinds of adipose tissues are identified in mammals: brown adipose tissue (BAT), beige or brite adipose tissue and white adipose tissue (WAT). Beige adipocytes share some characteristics with brown adipocytes such as the expression of UCP1. Beige adipocytes can be activated by environmental stimuli or pharmacological treatment, and this change is accompanied by an increase in energy consumption. This process is called white browning, and it facilitates the maintenance of a lean and healthy phenotype. Thus, promoting beige adipocyte development in WAT shows promise as a new strategy in treating obesity and related metabolic consequences. In this review, we summarized the current understanding of the regulators and hormones that participate in the development of brown fat and white fat browning., Jianmei Zhang, Huixiao Wu, Shizhan Ma, Fei Jing, Chunxiao Yu, Ling Gao, Jiajun Zhao., and Obsahuje bibliografii