We consider various forms of Ramsey's theorem, the monotone subsequence theorem and the Bolzano-Weierstrass theorem which are connected with ideals of subsets of natural numbers. We characterize ideals with properties considered. We show that, in a sense, Ramsey's theorem, the monotone subsequence theorem and the Bolzano-Weierstrass theorem characterize the same class of ideals. We use our results to show some versions of density Ramsey's theorem (these are similar to generalizations shown in [P. Frankl, R. L. Graham, and V. Rödl: Iterated combinatorial density theorems. J. Combin. Theory Ser. A 54 (1990), 95–111].