This paper is concerned with impulsive practical synchronization in a class of n-dimensional nonautonomous dynamical systems with parameter mismatch. Some simple yet general algebraic synchronization criteria are derived based on the developed practical stability theory on impulsive dynamical systems. A distinctive feature of this work is that the impulsive control strategy is used to make n-dimensional nonautonomous dynamical systems with parameter mismatch achieve practical synchronization, where the parameter mismatch likewise exist in both system parameters and external excitation ones, and the synchronization error bound can be estimated by an analytical expression. Subsequently, the obtained results are applied to a typical gyrostat system, and numerical simulations demonstrate the effectiveness of the criteria and the robustness of the control technique.
In this paper, we propose a new impulsive predator prey model with impulsive control at different fixed moments and analyze its interesting dynamic behaviors. Sufficient conditions for the globally asymptotical stability of the semi-trivial periodic solution and the permanence of the present model are obtained by Floquet theory of impulsive differential equation and small amplitude perturbation skills. Existences of the "infection-free" periodic solution and the "predator-free" solution are analyzed by bifurcation theory of impulsive differential equation. Finally, the analytical results presented in the work are validated by numerical simulation figures for this proposed model.