Statins are powerful lipid-lowering drugs, widely used in patients with hyperlipidemia and coronary artery disease. It was found, however, that statins appear to have a pleiotropic effect beyond their lipid-lowering ability. They exert anti-inflammatory, antithrombotic and antioxidant effects, increase nitric oxide production and improve endothelial dysfunction. The aim of our study was to examine the effect of chronic and acute treatment with simvastatin on the contractile function of the isolated perfused rat heart after ischemia/reperfusion injury. Contractile function was measured on isolated rat hearts, perfused according to Langendorff under constant pressure. The hearts were subjected to 20 min of global ischemia, followed by 40 min of reperfusion. To investigate the acute effect, simvastatin at a concentration of 10 μmol/l was added to the perfusion solution during reperfusion. In chronic experiments the rats were fed simvastatin at a concentration of 10 mg/kg for two weeks before the measurement of the contractile function. Acute simvastatin administration significantly increased reparation of the peak of pressure development [(+dP/dt)max] (52.9±8.2 %) after global ischemia, as compared with the control group (28.8±5.2 %). Similar differences were also observed in the time course of the recovery of [(+dP/dt)max]. Chronic simvastatin was without any protective effect. Our results reveal that the acute administration of simvastatin during reperfusion, unlike the chronic treatment, significantly reduced contractile dysfunction induced by ischemia/reperfusion injury. This supports the idea of possible cardioprotective effect of statin administration in the first-line therapy of the acute coronary syndrome., O. Szárszoi, J. Malý, P. Ošťádal, I. Netuka, J. Bešík, F. Kolář, B. Ošťádal., and Obsahuje bibliografii a bibliografické odkazy
The aim of our study was to characterize resistance to ischemia/reperfusion (I/R) injury in Langendorff-perfused rat hearts and effectivity of ischemic preconditioning (PC) under condition of simulated acute hyperglycemia (SAHG) by perfusion of the hearts with Krebs-Henseleit (KH) solution with elevated glucose concentration (22 mmol/l). I/R injury was induced by 30- min coronary occlusion followed by 120-min reperfusion and PC by two cycles of 5-min occlusion/5-min reperfusion, prior to I/R. The severity of I/R injury was characterized by determination of the size of infarction (IS, expressed in % of area at risk size) and the amount of heart-type fatty acid binding protein (h-FABP, a marker of cell injury) released from the hearts to the effluent. Significantly smaller IS (8.8±1 %) and lower total amount of released h-FABP (1808±660 pmol) in PC group compared with IS 17.1±1.2 % (p<0.01) and amount of h-FABP (8803±2415 pmol, p<0.05) in the non-PC control hearts perfused with standard KH solution (glucose 11 mmol/l) confirmed protective effects of PC. In contrast, in SAHG groups, PC enhanced IS (21.4±2.2 vs. 14.3±1.3 %, p<0.05) and increased total amount of h-FABP (5541±229 vs. 3458±283 pmol, p<0.05) compared with respective non-PC controls. Results suggest that PC has negative effect on resistance of the hearts to I/R injury under conditions of elevated glucose in vitro., M. Zálešák, P. Blažíček, D. Pancza, V. Ledvényiová, M. Barteková, M. Nemčeková, S. Čarnická, A. Ziegelhöffer, T. Ravingerová., and Obsahuje bibliografii