The slowly metabolized proteins of the extracellular matrix, typically collagen and elastin, accumulate reactive metabolites through uncontrolled non-enzymatic reactions such as glycation or the products arising from the reaction of unsaturated long chain fatty acid metabolites (possessing aldehydic groups). A typical example of these non-enzymatic changes is the formation of advanced glycation end-products (AGEs), resulting from the reaction of carbohydrates with the free amino group of proteins. The accumulation of AGEs and the resulting structural alterations cause altered tissue properties (increased stiffness, reduced elasticity) that contribute to their reduced catabolism and to their aging. Posttranslational nonenzymatic modifications of the proteins of the extracellular matrix (the formation of a typical AGE product - pentosidine) were studied in three types of tissue of three rat strains subjected to a high-fructose diet. Chronic (three-week) hyperglycemia (resulting from fructose loading) caused a significant increase in pentosidine concentration mainly in the aorta and skin of the three rat strains (Lewis, Wistar and hereditary hypertriglyceridemic rats)., K. Mikulíková, A. Eckhardt, J. Kuneš, J. Zicha, I. Mikšík., and Obsahuje bibliografii a bibliografické odkazy
The oxidative stress hypothesis of aging suggests that accumulation of oxidative damage is a key factor of the alterations in physiological function during aging. We studied age-related sensitivity to oxidative modifications of proteins and lipids of cardiac sarcoplasmic reticulum (SR) isolated from 6-, 15- and 26-month-old rats. Oxidative stress was generated in vitro by exposing SR vesicles to 0.1 mmol/l FeSO4/EDTA + 1 mmol/l H2O2 at 37 °C for 60 min. In all groups, oxidative stress was associated with decreased membrane surface hydrophobicity, as detected by 1-anilino-8-naphthalenesulfonate as a probe. Structural changes in SR membranes were accompanied by degradation of tryptophan and significant accumulation of protein dityrosines, protein conjugates with lipid peroxidation products, conjugated dienes and thiobarbituric acid reactive substances. The sensitivity to oxidative damage was most pronounced in SR of 26-month-old rat. Our results indicate that aging and oxidative stress are associated with accumulation of oxidatively damaged proteins and lipids and these changes could contribute to cardiovascular injury., E. Babušíková, M. Jeseňák, D. Dobrota, N. Tribulová, P. Kaplán., and Obsahuje bibliografii a bibliografické odkazy
Hypertension-induced myocardial metabolic, structural and electrophysiological remodeling deteriorates with aging and contributes to both heart failure and occurrence of malignant arrhythmias. It has been shown in clinical trials that n-3 polyunsaturated fatty acids (n-3 PUFA) reduce the incidence of cardiovascular diseases and sudden cardiac death. We investigated the cardioprotective effects of n-3 PUFA in aged spontaneously hypertensive rats (SHR) and possible cellular mechanisms involved. Male and female 14-month-old SHR were fed with n-3 PUFA (Vesteralens, Norway, 20 mg/day for two months) and compared with untreated SHR. Results showed that n-3 PUFA supplementation led to 1) significant decline of blood pressure; 2) suppression of inducible ventricular fibrillation (VF) by 57 % (male) and 67 % (female) , although the arrhythmogenic substrates, like fibrosis, hypertrophy and abnormal gap junctions distribution were not eliminated; 3) preservation of the cardiomyocytes and the inte grity of their junctions; 4) enhancement of energetic metabolism enzyme activity; 5) augmentation of capillary density associated with increased alkaline phosphatase and decreased dipeptidyl peptidase-4 (DPP4) activity and 6/ increase in gap junction channel connexin-43 expression. Thus, aged male as well as female SHR benefit from n-3 PUFA supplementation that results in decrease in VF susceptibility, partly due to an improvement of myocardial metabolic state, cardiomyocyte and cell-to-cell junctions integrity and Cx43 up-regulation., M. Mitašíková, S. Šmidová, A. Mascaliová, V. Knezl, K. Dlugošová, Ľ. Okruhlicová, P. Weismann, N. Tribulová., and Obsahuje bibliografii a bibliografické odkazy
We studied the ability of the ECG to detect pathological changes in isoproterenol-induced remodeling of rat heart. Myocardial hypertrophy in rats was induced by repeated injections of isoproterenol (5 mg/kg s.c. 7 days, Iso5, n=7). Single overdose of isoproterenol (150 mg/kg s.c., Iso150, n=7) evoked myocardial infarction followed with ventricular remodeling. The electrocardiograms were recorded in anesthetized animals (thiopenthal 45 mg/kg i.p.) and myocardial contractile performance was analyzed in isolated hearts perfused according to Langendorff. The hypertrophic hearts were characterized by increased heart and left ventricular (LV) weight as well as by thicker LV free wall and interventricular septum. Mean values of LV contraction did not significantly differ from controls. Longer QT interval, QRS complex, negative Q and S waves, higher R amplitude were typical characteristics for Iso5 rats. Iso150 animals showed tendency to decreased systolic blood pressure and heart frequency. Decrease in the thickness of LV compared to Iso5 as well as impaired LV function were related to the dilated left ventricle. Iso150 ECG showed longer QRS and QT, deepened negativity of S wave and mild decrease of RII compared to Iso5. Voltage criteria showed that Sokolow-Lyon index is a good predictor of left ventricular hypertrophy in isoproterenol-induced cardiac remodeling without systemic hypertension., E. Kráľová, T. Mokráň, J. Murín, T. Stankovičová., and Obsahuje bibliografii a bibliografické odkazy
The aim of present study was to investigate functional and physical alterations in membranes of heart mitochondria that are associated with remodeling of these organelles in acute phase of streptozotocin-induced diabetes and to elucidate the role of these changes in adaptation of the heart to acute streptozotocin-induced diabetes (evaluated 8 days after single dose streptozotocin application to male Wistar rats). Action of free radicals on the respiratory chain of diabetic-heart mitochondria was manifested by 17 % increase (p<0.05) in oxidized form of the coenzyme Q10 and resulted in a decrease of states S3 and S4 respiration, the respiratory control index, rate of phosphorylation (all p<0.01) and the mitochondrial transmembrane potential (p<0.05), but the ADP/O ratio decreased only moderately (p>0.05). On the contrary, membrane fluidity and the total mitochondrial Mg2+-ATPase activity increased (both p<0.05). In diabetic heart mitochondria, linear regression analysis revealed a reciprocal relationship between the increase in membrane fluidity and decrease in trans-membrane potential (p<0.05, r = 0.67). Changes in membrane fluidity, transmembrane potential, Mg2+-ATPase activity and the almost preserved ADP/O ratio appear as the manifestation of endogenous protective mechanisms participating in the functional remodeling of mitochondria which contributes to adaptation of the heart to diabetes., M. Ferko, D. Habodászová, I. Waczulíková, J. Mujkošová, J. Kucharská, L. Šikurová, B. Ziegelhöffer, J. Styk, A. Ziegelhöffer., and Obsahuje bibliografii a bibliografické odkazy
Reactive oxygen species (ROS) have been implicated in the mechanism of postischemic contractile dysfunction, known as myocardial stunning. In this study, we examined protective effects of antioxidant enzymes, superoxide dismutase (SOD) and catalase, against ischemia/reperfusion-induced cardiac dysfunction and inhibition of Na+,K+-ATPase activity. Isolated Langendorff-perfused rabbit hearts were subjected to 15 min of global normothermic ischemia followed by 10 min reperfusion. The hearts treated with SOD plus catalase did not show significant recovery of left ventricular (LV) end-diastolic pressure compared with untreated ischemic reperfused hearts. Treatment with antioxidants had no protective effects on developed LV pressure or its maximal positive and negative first derivatives (±LVdP/dt). Myocardial stunning was accompanied by significant loss in sarcolemmal Na+,K+-ATPase activity and thiol group content. Inhibition of enzyme activity and oxidation of SH groups were not prevented by antioxidant enzymes. These results suggest that administration of SOD and catalase in perfusate do not protect significantly against cardiac dysfunction in stunned rabbit myocardium., P. Kaplán, M. Matejovičová, P. Herijgers, W. Flameng., and Obsahuje bibliografii a bibliografické odkazy
Direct cell-to-cell communication in the heart is maintained via gap junction channels composed of proteins termed connexins. Connexin channels ensure molecular and electrical signals propagation and hence are crucial in myocardial synchronization and heart function. Disease-induced gap junctions remodeling and/or an impairment or even block of intercellular communication due to acute pathological conditions results in derangements of myocardial conduction and synchronization. This is critical in the development of both ventricular fibrillation, which is a major cause of sudden cardiac death and persistent atrial fibrillation, most common arrhythmia in clinical practice often resulting in stroke. Many studies suggest that alterations in topology (remodeling), expression, phosphorylation and particularly function of connexin channels due to age or disease are implicated in the development of these life-threatening arrhythmias. It seems therefore challenging to examine whether compounds that could prevent or attenuate gap junctions remodeling and connex in channels dysfunction can protect the heart against arrhythmias that cause sudden death in humans. This assumption is supported by very recent findings showing that an increase of gap junctional conductance by specific peptides can prevents atrial conduction slowing or re-entrant ventricular tachycardia in ischemic heart. Suppression of ischemia-induced dephosphorylation of connexin seems to be one of the mechanisms involved. Another approach for identifying novel treatments is based on the hypothesis that even non-antiarrhythmic drugs with antiarrhythmic ability can modulate gap junctional communication and hence attenuate arrhythmogenic substrates., N. Tribulová, V. Knezl, Ľ. Okruhlicová, J. Slezák., and Obsahuje bibliografii a bibliografické odkazy
There is a large body of evidence documenting the effects of long-chain polyunsaturated fatty acids with the first double bond at the third position from methyl-terminal (so called omega-3 fatty acids (FAs)) on different components of cardiovascular disease (CVD) risk. However, it may seem the more answers on the topic we learn, the more questions remain to be elucidated. There are three levels of evidence documenting the impact of fish omega-3 FAs on CVD risk. Epidemiological data have shown unequivocally the increased intake of fish is associated with lower CVD morbidity and mortality. Numerous experimental studies have shown (almost always) positive effects of omega-3 FAs on lipoprotein metabolism, coagulation and platelet function, endothelial function, arterial stiffness etc. Most importantly, there are a few prospective clinical endpoint trials (DART, JELIS, GISSI Prevenzione and GISSI-HF) that have examined the impact of omega-3 FAs supplementation on cardiovascular outcomes in different patient populations. Recent meta-analyses of these and other clinical studies have yielded somewhat conflicting results. In this review we will summarize current evidence of omega-3 FAs effects on cardiovascular risk focusing on new data from recent clinical trials as well as possible practical implications for clinical practice., M. Vrablík ... [et al.]., and Obsahuje seznam literatury
Phosphorylation of phospholemman (PLM) on ser68 has been proposed to at least partially mediate cyclic AMP (cAMP) mediated relaxation of arterial smooth muscle. We evaluated the time course of the phosphorylation of phospholemman (PLM) on ser68, myosin regulatory light chains (MRLC) on ser19, and heat shock protein 20 (HSP20) on ser16 during a transient forskolin-induced relaxation of histamine-stimulated swine carotid artery. We also evaluated the dose response for forskolin- and nitroglycerin-induced relaxation in phenylephrine-stimulated PLM-/- and PLM+/+ mice. The time course for changes in ser19 MRLC dephosphorylation and ser16 HSP20 phosphorylation was appropriate to explain the forskolin-induced relaxation and the recontraction observed upon washout of forskolin. However, the time course for changes in ser68 PLM phosphorylation was too slow to explain forskolin-induced changes in force. There was no difference in the phenylephrine contractile dose response or in forskolin-induced relaxation dose response observed in PLM-/- and PLM+/+ aortae. In aortae precontracted with phenylephrine, nitroglycerin induced a slightly, but significantly greater relaxation in PLM-/- compared to PLM+/+ aortae. These data are consistent with the hypothesis that ser19 MRLC dephosphorylation and ser16 HSP20 phosphorylation are involved in forskolin-induced relaxation. Our data sugge st that PLM phosphorylation is not significantly involved in forskolin-induced arterial relaxation., M. K. Meeks, S. Han, A, L. Tucker, C. M. Rembold., and Obsahuje bibliografii a bibliografické odkazy