This paper studies the leader-following consensus problem of second-order multi-agent systems with directed topologies. By employing the asynchronous sampled-data protocols, sufficient conditions for leader-following consensus with both constant velocity leader and variable velocity leader are derived. {Leader-following quasi-consensus can be achieved in multi-agent systems when all the agents sample the information asynchronously.} Numerical simulations are provided to verify the theoretical results.
In this paper, we consider a multi-agent consensus problem with an active leader and variable interconnection topology. The dynamics of the active leader is given in a general form of linear system. The switching interconnection topology with communication delay among the agents is taken into consideration. A neighbor-based estimator is designed for each agent to obtain the unmeasurable state variables of the dynamic leader, and then a distributed feedback control law is developed to achieve consensus. The feedback parameters are obtained by solving a Riccati equation. By constructing a common Lyapunov function, some sufficient conditions are established to guarantee that each agent can track the active leader by assumption that interconnection topology is undirected and connected. We also point out that some results can be generalized to a class of directed interaction topologies. Moreover, the input-to-state stability (ISS) is obtained for multi-agent system with variable interconnection topology and communication delays in a disturbed environment.