When dark-acclimated cotton (Gossypium hirsutum L. cv. Coker 312) leaves, pre-treated with lincomycin to inhibit chloroplast protein repair processes, were exposed to 10 °C and a PPFD of 500 μmol m-2 s-1, the proportion of excitation energy entering photochemistry (P) increased, but only to 5 % of the total energy absorbed at steady state levels of P, which were reached at 40 min of irradiation. Thermal dissipation (D) of absorbed energy increased throughout the 360 min irradiation period and accounted for the greatest portion of absorbed energy at 10 °C. When D was partitioned into constitutive (DCON), regulated (DREG), and photoinhibitory (DPI) components, it was primarily composed of DREG, the readily reversible portion of D. However, the induction of D was slow at 10 °C. Sixty minutes were required for D to reach 70 % of the energy absorbed. Considerable absorption of energy in excess of that utilized in photochemistry or dissipated thermally (designated as E) occurred, especially during induction of P and D. Over the irradiation period, the time-dependent averaged E exhibited an inverse, linear relationship with the ratio of variable (Fv) to maximum (Fm) fluorescence (PS2 efficiency) and a linear relationship with DPI. We propose that time-dependent averaged E may be useful for estimating the potential for damage to PS2 under stressful environmental conditions. and D. Kornyeyev, B. A. Logan, A. S. Holaday.
The cold hardiness of individuals from overwintering populations of a freeze susceptible bug Pyrrhocoris apterus from central and southern Europe differed significantly. Supercooling point (SCP) correlated well with both lethal temperature (LT50) and lethal time (Lt50), and is agood index of cold hardiness of adults during and after diapause. In January, diapause terminated, but cold hardiness was similar to that recorded in November; cold hardiness decreased slightly in March and markedly in May. Short exposure (less than a week) to higher temperatures before termination of diapause did not reduce the cold hardiness. Cold hardiness did not closely follow air temperatures.The Bulgarian bugs retained lower cold hardiness regardless of acclimation to harsh field conditions in the Czech Republic. The interpopulation difference is therefore a heritable character representing an adjustment to local climates.
In order to elucidate the effects of chilling-stress at night on photosystem 2 (PS2) efficiency under dim irradiance (DI), mango leaves were chilled to varied extent (8-3 °C) and for varied duration (0-12 h) in growth cabinets in the dark, and then exposed to DI (20 μmol m-2 s-1 PPFD) at each chilling-temperature for 1 h. Chilling in the dark had little effect on Fv/Fm of mango leaves. But both the extent and duration of chilling pre-treatments significantly affected Fv'/Fm' when leaves were exposed to DI. This down-regulation of PS2 efficiency was closely related to xanthophyll de-epoxidation, assessed as photochemical reflectance index (PRI) and calculated from leaf spectral reflectance [(R531 - R570)/(R531 + R570)], and non-photochemical quenching (NPQ). The down-regulation of PS2 is a defence mechanism initiated at predawn in winter to alleviate the damage of PS2 by the sudden and strong irradiation at sunrise. Mango leaves, transferred suddenly from warm and dark room to DI and chilling showed a slight down-regulation of PS2 efficiency, in spite of an increased xanthophyll de-epoxidation. This might have been due to the unavailability of some cofactors required for NPQ. and J.-H. Weng ... [et al.].
The effect of a short cold stress in combination with photoinhibition stress, similar to a low temperature and a high irradiance situation during early morning in the spring time, was examined on four maize cultivars common for Belgium, that differ in early vigour. After 1 h of 2 °C and 500 μmol(photon) m-2 s-1, quantum efficiency and maximum photosynthesis rate at saturating irradiance decreased on average by 11 and 8 %, respectively. For one cultivar, Magister, the decrease was the largest: by 23 and 10 %, respectively. For this cultivar it was combined with a decrease of the water vapour conductance after the stress. The decrease of Fv/F0 due to the cold/light stress was dependent on the cold tolerance (early vigour) of the cultivars. Fv/F0 changed with -45.5 and -40.2 % for the cultivars Ardiles and Banguy, respectively (cultivars with a less good early vigour) in comparison to -36.3 and -35.9 % for Fjord and Magister, which have a good early vigour. Also the ratio of total chlorophylls/total carotenoids changed in dependence on cold tolerance of the cultivars. For more cold tolerant cultivars, the relative amount of total carotenoids (x+c) was higher, indicating a higher protective state. Both the parameter Fv/F0 and the ratio of total chlorophylls to total carotenoids can be used to differentiate the cold tolerant cultivars from the cold non-tolerant ones. Fv/F0 has the advantage because its resolving power is larger and the measurement is less expensive than determination of the pigment ratio. and P. Lootens, J. van Waes, L. Carlier.
Industrial chicory, Cichorium intybus L., is cultivated for the production of inulin. Most varieties of industrial chicory exhibit rather poor early growth, which limits further yield improvements in their European cultivation area. The poor early growth could be due to suboptimum adaptation of the gene pool to growth at low temperatures, sometimes in combination with high light intensities, which is typical of early-spring mornings. We have used chlorophyll (Chl) a fluorescence to evaluate the response of young plants of the cultivar 'Hera' to low temperatures and high light intensities. Plants were grown at three temperatures: 16°C (reference), 8°C (intermediate), and 4°C (cold stress). Light-response measurements were carried out at different light intensities in combination with different measurement temperatures. Parameters that quantify the photosystem II (PSII) operating efficiency (including PSII maximum efficiency and PSII efficiency factor) and nonphotochemical quenching (NPQ) are important to evaluate the stress in terms of severity, the photosynthetics processes affected, and acclimation to lower growth temperatures. The results clearly demonstrate that in young industrial chicory plants the photosynthetic system adapts to lower growth temperatures. However, to fully understand the plant response to the stresses studied and to evaluate the long-term effect of the stress applied on the growth dynamics, the subsequent dark relaxation dynamics should also be investigated. and S. Devacht ... [et al.].
Low temperature significantly influences chloroplast development and chlorophyll (Chl) biosynthesis, so effect of coldness on Chl content and Chl fluorescence characteristics was investigated in C. bungeana (Chorispora bungeana Fisch. & C.A. Mey). The levels of transcript and protein of an enzymatic step during Chl biosynthesis in response to chilling (4°C) and freezing (-4°C) were also examined in this work. Significant reduction in total Chl content was observed, but the reduction was much less at 4°C than that at -4°C. Moreover, the maximal quantum efficiency of photosystem II (PSII) photochemistry, indicated by Fv/Fm, decreased in the first 12 h, but then started to increase and reached higher levels than the control at 24 h and 48 h at 4°C, but decreased continuously at -4°C. Whereas quantum yield of PSII (ΦPSII) showed no significant difference between the chilling-stressed and the control seedlings, at -4°C, ΦPSII was markedly reduced with the prolonged treatment. In general, there were no significant responses of photochemical quenching (qP) and non-photochemical quenching (NPQ) to cold treatment. Meanwhile, the full-length cDNA of NADPH:protochlorophyllide oxidoreductase (POR, EC 1.3.1.33) was isolated and termed CbPORB (GenBank Accession No. FJ390503). Its transcript and protein content only slightly declined at 4°C, but dramatically reduced at -4°C with the time. These results strongly suggest that CbPORB possesses certain resistant characteristics and is a major player in Chl biosynthesis process involved in plant growth and development of C. bungeana under cold environmental conditions. and Y. H. Li ... [et al.].
Early light-induced proteins (ELIPs) are nuclear-encoded thylakoid proteins. In the present research, two full-length cDNAs (741 and 815 bp), encoding ELIPs (190 and 175 aa) and their genomic sequences, were isolated from tea leaves, and named CsELIP1 and CsELIP2, respectively. Both the deduced CsELIPs contain a chloroplast transit peptide in the N-terminus and a chlorophyll a/b binding protein motif with three transmembrane helices in the C-terminus. The genomic sequences of the two CsELIPs conform to the three-exon pattern of ELIP genomic sequences of other plant species. However, the identities between two CsELIPs and ACJ09655 from gymnosperm species were higher than all of
ELIP-like proteins identified from other angiosperms. Expression analysis showed that the two CsELIP genes were significantly
up-regulated when the photoinhibition occurred in tea leaves, implying that they might be involved in photoprotection., X. W. Li ... [et al.]., and Obsahuje bibliografii
The response of Picea glehnii, a cold-tolerant species in the boreal zone, to air temperature (T) was investigated for its cold-acclimated needles (i.e. the ones subjected to gradual decrease in T) and nonacclimated needles (i.e. the ones subjected to a sudden decrease in T) were compared under low temperature.
Cold-acclimated needles showed a greater increase of zeaxanthin and lutein contents than nonacclimated ones, whereas the nonacclimated needles showed a greater increase of thylakoid-bound ascorbate peroxidase (tAPX) activity than cold-acclimated ones under chilling conditions (after cold acclimation). These results suggest that: (1) low T induces the increase of zeaxanthin and lutein content, and tAPX activity; (2) accumulated zeaxanthin and lutein protect needles from photooxidative stress by dissipating excess energy before the reactive oxygen species (ROS) are formed in response to a gradual decrease in T (with cold acclimation and subsequent chilling condition), and by tAPX scavenging ROS formed in the case of a sudden decrease in T (without cold acclimation and chilling condition). and J.-J. Bae ... [et al.].
Nuptial flights of Crematogaster teranishii Santschi occur in autumn. Queens and possibly larvae pass the first winter without workers in Okayama, Japan. This study examines and tests the hypothesis that C. teranishii queens regulate not only their own diapause, but also that of their larvae. Some queens collected immediately after their nuptial flight in early October were exposed to a low temperature of 10°C for 3 months before transfer to 25°C; these queens started oviposition approximately 8 days after the transfer. Larvae reared by these previously chilled queens pupated synchronously until day 50. Other field-collected queens reared at 25°C without prior chilling reproduced soon after collection. They started oviposition, but the development of their larvae was arrested and pupation occurred late or not at all within the120 day experimental period. The delay in pupation in colonies in which the queens were not previously exposed to low temperature strongly indicates that many larvae are in diapause. Because eggs and larvae were not exposed to low temperatures, they were unable to determine the developmental pathway providing the best response to environmental factors. Results indicate that queens regulate whether their larvae undergo diapause.
Two lichen species collected in maritime Antarctica (King George Island) were exposed under laboratory conditions to excess irradiance to evaluate the response of photosystem 2 (PS2). The response was measured on fully hydrated lichen thalli at 5 °C by means of a modulated fluorometer using chlorophyll (Chl) fluorescence induction curve supplemented with analysis of quenching mechanisms. Chl fluorescence parameters [i.e. ratio of variable to maximum Chl fluorescence (FV/FM), quantum yield of PS2 photochemical reactions (Φ2), quenching coefficients] were evaluated before and several times after exposition to high irradiance in order to characterise the extent of photoinhibition, fast and slow phase of recovery. Strong irradiance (2 000 μmol m-2 s-1) caused high degree of photoinhibition, particularly higher in fruticose (Usnea antarctica) than in foliose (Umbilicaria decussata) lichen species. Fast phase of recovery from photoinhibition, corresponding to regulatory mechanisms of PS2, was more apparent in U. decussata and Φ2 than in U. antarctica and FV/FM and Φ2 within 40 min after photoinhibitory treatment. It was followed by a slow phase lasting several hours, corresponding to repair and re-synthesis processes. After photoinhibitory treatment, recovery of non-photochemical quenching (NPQ) was faster and more pronounced in U. decussata than in U. antarctica. Significant differences were found between the two species in the rate of recovery in fast-(qE) and slow-recovering (qT+I) component of NPQ. and M. Barták, H. Vráblíková, J. Hájek.