If (M,∇) is a manifold with a symmetric linear connection, then T*M can be endowed with the natural Riemann extension g¯ (O. Kowalski and M. Sekizawa (2011), M. Sekizawa (1987)). Here we continue to study the harmonicity with respect to g¯g¯ initiated by C. L.Bejan and O.Kowalski (2015). More precisely, we first construct a canonical almost para-complex structure PP on (T*M, g¯) and prove that P is harmonic (in the sense of E.Garciá-Río, L.Vanhecke and M. E.Vázquez-Abal (1997)) if and only if g¯ reduces to the classical Riemann extension introduced by E.M. Patterson and A.G. Walker (1952)., Cornelia-Livia Bejan, Şemsi Eken., and Obsahuje bibliografii
We derive a curvature identity that holds on any 6-dimensional Riemannian manifold, from the Chern-Gauss-Bonnet theorem for a 6-dimensional closed Riemannian manifold. Moreover, some applications of the curvature identity are given. We also define a generalization of harmonic manifolds to study the Lichnerowicz conjecture for a harmonic manifold "a harmonic manifold is locally symmetric" and provide another proof of the Lichnerowicz conjecture refined by Ledger for the 4-dimensional case under a slightly more general setting., Yunhee Euh, Jeong Hyeong Park, Kouei Sekigawa., and Obsahuje bibliografii
The perturbed Laplacian matrix of a graph G is defined as DL = D−A, where D is any diagonal matrix and A is a weighted adjacency matrix of G. We develop a Fiedler-like theory for this matrix, leading to results that are of the same type as those obtained with the algebraic connectivity of a graph. We show a monotonicity theorem for the harmonic eigenfunction corresponding to the second smallest eigenvalue of the perturbed Laplacian matrix over the points of articulation of a graph. Furthermore, we use the notion of Perron component for the perturbed Laplacian matrix of a graph and show how its second smallest eigenvalue can be characterized using this definition., Israel Rocha, Vilmar Trevisan., and Obsahuje seznam literatury
The least concave majorant, $\hat F$, of a continuous function $F$ on a closed interval, $I$, is defined by $ \hat F (x) = \inf\{ G(x) G \geq F, G \text{ concave}\},\quad x \in I. $ We present an algorithm, in the spirit of the Jarvis March, to approximate the least concave majorant of a differentiable piecewise polynomial function of degree at most three on $I$. Given any function $F \in\mathcal{C}^4(I)$, it can be well-approximated on $I$ by a clamped cubic spline $S$. We show that $\hat S$ is then a good approximation to $\hat F$. We give two examples, one to illustrate, the other to apply our algorithm., Martin Franců, Ron Kerman, Gord Sinnamon., and Obsahuje bibliografii
We consider a large class of impulsive retarded functional differential equations (IRFDEs) and prove a result concerning uniqueness of solutions of impulsive FDEs. Also, we present a new result on continuous dependence of solutions on parameters for this class of equations. More precisely, we consider a sequence of initial value problems for impulsive RFDEs in the above setting, with convergent right-hand sides, convergent impulse operators and uniformly convergent initial data. We assume that the limiting equation is an impulsive RFDE whose initial condition is the uniform limit of the sequence of the initial data and whose solution exists and is unique. Then, for sufficient large indexes, the elements of the sequence of impulsive retarded initial value problem admit a unique solution and such a sequence of solutions converges to the solution of the limiting Cauchy problem., Márcia Federson, Jaqueline Godoy Mesquita., and Obsahuje seznam literatury
An n × n ray pattern A is called a spectrally arbitrary ray pattern if the complex matrices in Q(A) give rise to all possible complex polynomials of degree n. In a paper of Mei, Gao, Shao, and Wang (2014) was proved that the minimum number of nonzeros in an n×n irreducible spectrally arbitrary ray pattern is 3n-1. In this paper, we introduce a new family of spectrally arbitrary ray patterns of order n with exactly 3n - 1 nonzeros., Yinzhen Mei, Yubin Gao, Yanling Shao, Peng Wang., and Obsahuje seznam literatury
A close relationship between the class of totally positive matrices and anti-Monge matrices is used for suggesting a new direction for investigating totally positive matrices. Some questions are posed and a partial answer in the case of Vandermonde-like matrices is given., Miroslav Fiedler., and Obsahuje seznam literatury
Let G be a group. If every nontrivial subgroup of G has a proper supplement, then G is called an aS-group. We study some properties of aS-groups. For instance, it is shown that a nilpotent group G is an aS-group if and only if G is a subdirect product of cyclic groups of prime orders. We prove that if G is an aS-group which satisfies the descending chain condition on subgroups, then G is finite. Among other results, we characterize all abelian groups for which every nontrivial quotient group is an aS-group. Finally, it is shown that if G is an aS-group and |G| ≠ pq, p, where p and q are primes, then G has a triple factorization., Reza Nikandish, Babak Miraftab., and Obsahuje seznam literatury
We show that there is a model structure in the sense of Quillen on an arbitrary Frobenius category F such that the homotopy category of this model structure is equivalent to the stable category F as triangulated categories. This seems to be well-accepted by experts but we were unable to find a complete proof for it in the literature. When F is a weakly idempotent complete (i.e., every split monomorphism is an inflation) Frobenius category, the model structure we constructed is an exact (closed) model structure in the sense of Gillespie (2011)., Zhi-Wei Li., and Seznam literatury
Let (G) and i(G) be the domination number and the independent domination number of G, respectively. Rad and Volkmann posted a conjecture that i(G)/ (G) 6 (G)/2 for any graph G, where (G) is its maximum degree (see N. J.Rad, L.Volkmann (2013)). In this work, we verify the conjecture for bipartite graphs. Several graph classes attaining the extremal bound and graphs containing odd cycles with the ratio larger than (G)/2 are provided as well., Shaohui Wang, Bing Wei., and Seznam literatury