We show that there is a model structure in the sense of Quillen on an arbitrary Frobenius category F such that the homotopy category of this model structure is equivalent to the stable category F as triangulated categories. This seems to be well-accepted by experts but we were unable to find a complete proof for it in the literature. When F is a weakly idempotent complete (i.e., every split monomorphism is an inflation) Frobenius category, the model structure we constructed is an exact (closed) model structure in the sense of Gillespie (2011)., Zhi-Wei Li., and Seznam literatury
The paper presents the stopping rule for random search for Bayesian model-structure estimation by maximising the likelihood function. The inspected maximisation uses random restarts to cope with local maxima in discrete space. The stopping rule, suitable for any maximisation of this type, exploits the probability of finding global maximum implied by the number of local maxima already found. It stops the search when this probability crosses a given threshold. The inspected case represents an important example of the search in a huge space of hypotheses so common in artificial intelligence, machine learning and computer science.