Spontaneous depolarization similar to that from the sinus node was documented from the myocardial sleeves of pulmonary veins (PV) after isolation procedures. It was then hypothesized that sinus node-like tissue is present in the PVs of humans. Based on a number of features, the myocar dium of myocardial sleeves (MS) is highly arrhythmogenic. Membrane potentials originating from MS are invariably recordable at the PVs ostia in patients with atrial fibrillation (AF) and delayed conduction around the PVs ostia may play a role in re-e ntry process responsible for the initiation and maintenance of AF. Diagnostic and therapeutic evidence of premature atrial beats induced in MS of PVs and resulting in launch of AF was detected by 3D electroanatomic method of monophasic action potential (MAP). MAP recording plays an important role in a di rect view of human myocardial electrophysiology under both physiological and pathological conditions. Its crucial importance lies in the fact that it enables the study of the action potential of myocardial cell in vivo and, therefore, the study of the dynamic relation of this potential with all the organism variables. The knowledge of pathological MAPs from PV myocardial sleeves can help us to confirm a diagnosis when finding the similar action potential morphology. MAP can be also used to evaluate the therap eutic efficiency of vagal nerves suppression, radiofrequency ablation or other treatment procedures in PVs myocardial sleeves as well as for post- treatment following up., O. Kittnar, S.-G. Yang, M. Mlček., and Obsahuje bibliografii a bibliografické odkazy
Monophasic action potential (MAP) recording plays an important role in a more direct view of human myocardial electrophysiology under both physiological and pathological conditions. The procedure of MAP measuring can be simply performed using the Seldinger technique, when MAP catheter is inserted through femoral vein into the right ventricle or through femoral artery to the left ventricle. The MAP method represents a very useful tool for electrophysiological research in cardiology. Its crucial importance is based upon the fact that it enables the study of the action potential (AP) of myocardial cell in vivo and, therefore, the study of the dynamic relation of this potential with all the organism variables. This can be particularly helpful in the case of arrhythmias. There are no doubts that physiological MAP recording accuracy is almost the same as transmembrane AP as was recently confirmed by anisotropic bidomain model of the cardiac tissue. MAP recording devices provide precise information not only on the local activation time but also on the entire local repolarization time course. Although the MAP does not reflect the absolute amplitude or upstroke velocity of transmembrane APs, it delivers highly accurate information on AP duration and configuration, including early afterdepolarizations as well as relative changes in transmembrane diastolic and systolic potential changes. Based on available data, the MAP probably reflects the transmembrane voltage of cells within a few millimeters of the exploring electrode. Thus MAP recordings offer the opportunity to study a variety of electrophysiological phenomena in the in situ heart (including effects of cycle length changes and antiarrhythmic drugs on AP duration)., S.-G. Yang, O. Kittnar., and Obsahuje bibliografii a bibliografické odkazy