Methamphetamine (MA), as massively abused psychoactive stimulant, has been associated with many neurological diseases. It has various potent and neurotoxic properties. There are many mechanisms of action that contribute to its neurotoxic and degenerative effects, including excessive neurotransmitter (NEU) release, blockage of NEU uptake transporters, degeneration of NEU receptors, process of oxidative stress etc. MA intoxication is caused by blood-brain barrier disruption resulted from MA-induced oxidation stress. In our laboratory we constantly work on animal research of MA. Our current interest is to investigate processes of MA-induced alteration in neurotransmission, especially during development of laboratory rat. This review will describe current understanding in role of NEUs, which are affected by MA-induced neurotoxicity caused by altering the action of NEUs in the central nervous system (CNS). It also briefly brings information about NEUs development in critical periods of development.
The key role of the vagus nerves in the reflex control of breathing is generally accepted. Cardiopulmonary vagal receptors and their afferent connection with the medullary respiratory centers secures the proper regulatory feedback. Section of the vagi at the midcervical level interrupts primary vagal reflexes and those due to activation of lung afferents by neuroactive substances. In this context the present review focuses on the reflex contribution of the inferior (nodose) vagal ganglia to the respiratory pattern, considering that this structure contains perikarya of vagal afferent neurons which house neurotransmitters, neuropeptides and neurochemical substances. In experimental animals with removed sensory input from the lungs (midcervical vagotomy) the following evidence was reported. Transient respiratory suppression in the form of apnoea, occuring after systemic injection of serotonin, adenosine triphosphate and anandamide (N-arachidonoyl-ethanolamine-endogenous cannabinoid neurotransmitter), which was abrogated by nodose ganglionectomy. Preserved nodose-NTS connection conditioned respiratory depression affecting the timing component of the breathing pattern evoked by N-6-cyclopentyl-adenosine (CPA) and inhibition of both respiratory constituents induced by NPY. Stimulatory effect of NPY13-36 on tidal volume required nodosal connection. The cardiovascular effects of majority of the tested substances occurred beyond the nodose ganglia (with exclusion of serotonin and anandamide)., K. Kaczyńska, M. Szereda-Przestaszewska., and Obsahuje seznam literatury