In experimental and human diabetes mellitus, evidence for an impaired function of the vascular endothelium has been found and has been suggested to contribute to the development of vascular complications in this disease. The aim of the study was to evaluate possible regional hemodynamic in vivo differences between healthy and diabetic rats which would involve nitric oxide (NO). Central hemodynamics and regional blood flow (RBF) were studied using radioactive microspheres in early streptozotocin (STZ)-diabetic rats and compared to findings in healthy control animals. This method provides a possibility to study the total blood flow and vascular resistance (VR) in several different organs simultaneously. L-NAME iv induced widespread vasoconstriction to a similar extent in both groups. In the masseter muscle of both groups, acetylcholine 2 μg/kg per min, induced a RBF increase, which was abolished by pretreatment with L-NAME, suggesting NO as a mediator of vasodilation. In the heart muscle of both groups, acetylcholine alone was without effect while the combined infusion of acetylcholine and L-arginine induced an L-NAME-sensitive increase in RBF. The vasodilation induced by high-dose acetylcholine (10 μg/kg per min) in the kidney was more pronounced in the STZ-diabetic rats. The results indicate no reduction in basal vasodilating NO-tone in the circulation of early diabetic rats. The sensitivity to vasodilating effects of acetylcholine at the level of small resistance arterioles vary between tissues but was not impaired in the diabetic rats. In the heart muscle the availability of L-arginine was found to limit the vasodilatory effect of acetylcholine in both healthy and diabetic rats. In conclusion, the results indicate a normal action of NO in the investigated tissues of the early STZ-diabetic rat., E. Granstam, S.-O. Granstam., and Obsahuje bibliografii
It is known that HSP70 plays an important role in the antiischaemic effect of adaptation to stress. The aim of our study was to verify the hypothesis that nitric oxide (NO) may contribute to the activation of HSP70 synthesis and to enhance thereby the resistance of organism to the ischaemic and reperfusion damages. We observed that heat shock potentiated NO production in the heart NO formation was completely blocked by the NO synthase inhibitor N^-nitro-L-arginine (L-NNA). L-NNA also significantly attenuated the heat shock-induced accumulation of HSP70 (by 45 % in heart). Both heat shock and NO donor induced time- and concentration-dependent HSP70 synthesis in the culture of human hepatoblastoma cells Hep G2. Prior injection of NO donor (30-100 mg per rat) exerted a dose- dependent protective effect on the isolated heart in ischaemia and reperfusion within 24 hours. We suggest that NO is involved in the activation of HSP70 synthesis which can play an important role in the delayed protective effect of NO donors.
NO is the “hero” molecule of the last few decades. It is a ubiquitous and omnipotent radical with both hemodynamic and antiproliferative effects within the cardiovascular system. NO is an important counterregulatory factor for vasoconstrictors and growth promoting substances. Endothelial dysfunction with decreased NO production is related to many cardiovascular disorders, such as coronary artery disease, heart failure and hypertension. Despite the important role of NO within the circulation, there is only limited evidence in the form of large clinical trials that NO delivery can reduce cardiovascular morbidity and mortality. Thus, NO donors are not in the first line therapy in ischemic heart disease, heart failure or arterial hypertension and NO delivery is recommended only in particular clinical situations, when a well established treatment is contraindicated or has an insufficient effect. It is concluded that the insufficient NO production is the principal disorder in endothelial dysfunction, which is related to cardiovascular pathology with deteriorated prognosis, but the impact of therapeutically increased NO bioactivity on the morbidity and mortality is inferior to well established treatment with ACE-inhibitors, AT1 receptor blockers, beta-blockers, statins and certain antihypertensive drugs. There is little doubt that NO is king in the circulation, but kings seldom decide the battles., Fedor Šimko., and Obsahuje bibliografii
In the perfused guinea-pig heart reactive hyperaemia (RH) after occlusion of coronary flow (1-60 s) was inhibited by 100-60 % with NG-nitro-L-arginine (100 /¿M) and to a lesser extent (by 35 %) after 8-phenyltheophylline (10 /¿M), but not by indomethacin (5 ,«M). Inhibition of adenosine deaminase by erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA) (5 yWM) not only increased the concentration of adenosine in the coronary perfusate, but also prolonged the duration of RH. RH induced cardiac generation of prostacyclin, nitric oxide and adenosine as indicated by the appearance of 6-keto-PGFia, cyclic GMP, adenosine, inosine, hypoxanthine, xanthine and urate in the perfusate. Only NO and adenosine, but not prostacyclin, were responsible for RH. RH after short-term (1-10 s) coronary occlusion was mediated by NO, whereas adenosine and NO maintained RH that followed after longer (20 s-10 min) periods of cardiac ischaemia. Prostacyclin never participated in the mediation of RH.
To investigate lisinopril effect on the contribution of nitric oxide (NO) and KCa channels to acetylcholine (ACh)-induced relaxation in isolated mesenteric arteries of spontaneously hypertensive rats (SHRs). Third branch mesenteric arteries isolated from lisinopril treated SHR rats (20 mg/kg/day for ten weeks, SHR-T) or untreated (SHR-UT) or normotensi ve WKY rats were mounted on tension myograph and ACh concentration-response curves were obtained. Westernblotting of eNOS and K Ca channels was performed. ACh-induced relaxations were similar in all groups while L-NMMA and indomethacin caused significant rightward shift only in SHR-T group. Apamin and TRAM-34 (SKCa and IKCa channels blockers, respectively) significantly attenuated ACh-induced maximal relaxation by similar magnitude in vessels from all three groups. In the presence of L-NMMA, indomethacin, apamin and TRAM-34 further attenuated ACh-induced relaxation only in SHR-T. Furthermore, lisinopril treatment increased expression of eNOS, SKCa and BKCa proteins. Lisinopril treatment increased expression of eNOS, SKCa , BKCa channel proteins and increased the contribution of NO to ACh-mediated relaxation. This increased role of NO was apparent only when EDHF component was blocked by inhibiting SKCa and IKCa channels. Such may suggest that in mesenteric arteries, non-EDHF component functions act as a reserve system to provide compensatory vasodilatation if (and when) hyperpolarization that is mediated by SKCa and IKCa channels is reduced, S. Albarwani, S. Al-Siyabi, I. Al-Husseini, A. Al-Ismail, I. Al-Lawati, I. Al-Bahrani, M. O. Tanira., and Obsahuje bibliografii
Data concerning the effect of NO on the function and structure of the heart are controversiaL We have studied two main questions: (i) Does the heart muscle reflect the hypertension induced by long-term inhibition of NO synthase? (ii) Since the arginine-NO pathway is also operative in the autonomic nervous system, the second goal was to ascertain the possible changes of the adrenergic nervous system in the heart after long-term NO synthase inhibition. Wistar rats were administered L-NAME in drinking water (50 mg/kg bw/day) for 8 weeks. Systolic blood pressure and heart rate were monitored weekly. The heart/body weight ratio were determined at the end of experiment The adrenergic nerve terminals visualized by histochemistry were counted according to Haug’s point counting method. Blood pressure increased significantly in L-NAME-treated rats. No changes were found in the heart rate. Heart/body weight ratio increased markedly. Surprisingly, the density of adrenergic nerve terminals did not alter accordingly. The density of adrenergic nerve terminals in the left ventricle and septum decreased but no significant changes were found in the left atrium and the right ventricle. Hypertension due to NO deficiency induced cardiac hypertrophy that was characterized by a decline in the density of adrenergic innervation of the overloaded left ventricle and septum.
The heart weight and the structure of coronary and carotid arteries were studied in NO-deficient hypertension. Wistar rats were administered L-NAME (50 mg/kg/day) in drinking water for a period of 8 weeks. The blood pressure and heart rate were recorded weekly. In one group of control and experimental animals the heart weight was assessed and the heart/body weight ratio (relative heart weight) was calculated. In the other group of control and experimental animals, the cardiovascular system was perfused by a fixative under constant perfusion pressure. The inner circumference and the wall thickness (tunica intima and tunica media) of the coronary (septal branch) and carotid artery were measured using light microscopy and the wall/diameter ratio was calculated. Inhibition of NO synthase induced a significant increase in blood pressure (187.2±4.2 mm Hg compared to 131.4±1.9 mm Hg in the controls, p<0.01). The heart rate decreased (334.4±7.0 beats/min compared to 352.6±4.1 beats/min in the controls, p<0.05). The heart weight increased in NO-deficient rats (132±0.08 g versus 1.10±0.03 g, p<0.05); the heart/body weight index increased remarkably (3.09±0.15 compared to 2.10±0.04 in the controls, p<0.01). Morphometry of the septal branch of the left coronary artery indicated a decrease of the inner circumference (664±24 /um versus 832±30 //m, p<0.01), the increased wall thickness (21.15±0.84 jtm compared to 12.47±0.62 Jim in the controls, p<0.01) and the remarkably changed wall/diameter ratio (1:10 versus 1:21 in the controls). Similar alterations were found in the carotid arteries: the inner circumference was decreased (2456±39 Jim versus 2732±66 /¿m, p<0.01), the wall thickness increased (45.14±0.41 jim compared to 26.08±1.23 fim, p<0.01) and the wall/diameter ratio was changed to 1:17 in comparison with 133 in the controls. In conclusion, cardiac hypertrophy and structural alterations of the coronary artery and carotid artery accompany NO-deficient hypertension.
Exercise training (ET) is well established to induce vascular adaptations on the metabolically active muscles. These adaptations include increased function of vascular potassium channels and enhanced endothelium-dependent relaxations. However, the available data on the effect of ET on vasculatures that normally constrict during exercise, such as mesenteric arteries (MA), are scarce and not conclusive. Therefore, this study hypothesized that 10 weeks of moderate-intensity ET would result in adaptations towards more vasoconstriction or/and less vasodilatation of MA. Young Fischer 344 rats were randomly assigned to a sedentary group (SED; n=24) or exercise training group (EXE; n=28). The EXE rats underwent a progressive treadmill ET program for 10 weeks. Isometric tensions of small (SED; 252.9±29.5 µm, EXE; 248.6±34.4 µm) and large (SED; 397.7±85.3 µm, EXE; 414.0±86.95 µm) MA were recorded in response to cumulative phenylephrine concentrations (PE; 0-30 µM) in the presence and absence of the BKCa channel blocker, Iberiotoxin (100 nM). In another set of experiments, tensions in response to cumulative concentration-response curves of acetylcholine (ACh) or sodium nitroprusside (SNP) were obtained, and pEC50s were compared. Immunoblotting was performed to measure protein expression levels of the BKCa channel subunits and eNOS. ET did not alter the basal tension of small and large MA but significantly increased their responses to PE, and reduced the effect of BKCa channels in opposing the contractile responses to PE without changes in the protein expression level of BKCa subunits. ET also elicited a sizedependent functional adaptations that involved reduced endothelium-independent and endothelium-dependent relaxations. In large MA the sensitivity to SNP was decreased more than in small MA suggesting impaired nitric oxide (NO)-dependent mechanisms within the vascular smooth muscle cells of ET group. Whereas the shift in pEC50 of ACh-induced relaxation of small MA would suggest more effect on the production of NO within the endothelium, which is not changed in large MA of ET group. However, the eNOS protein expression level was not significantly changed between the ET and SED groups. In conclusion, our results indicate an increase in contraction and reduced relaxation of MA after 10 weeks of ET, an adaptation that may help shunt blood flow to metabolically active tissues during acute exercise.
We aimed to explore the effects of melatonin and n-3 polyunsaturated fatty acids (PUFA) supplementation on plasma and aortic nitric oxide (NO) levels in isoproterenol (Iso) affected spontaneously hypertensive (SHR) and Wistar rats. Untreated control rats were compared with Iso injected (118 mg/kg, s.c.) rats, and Iso injected plus supplemented with melatonin (10 mg/kg, p.o.) or PUFA (1.68 g/kg, p.o.) for two months. Plasma and aortic basal, L-NAME inhibited, adrenaline and acetylcholine stimulated NO were determined using Griess method. Plasma NO levels were lower in SHR versus Wistar rats. Iso decreased NO in Wistar while not in SHR. PUFA but not melatonin intake of Iso treated SHR increased plasma NO along with a decrease in systolic blood pressure. Basal aortic NO level was higher in SHR than Wistar rats and not altered by Iso. Intake of melatonin increased but PUFA decreased basal NO levels in Wistar+Iso and did not affect in SHR+Iso rats. Acetylcholine and adrenaline induced aortic NO release was significantly increased in Wistar+Iso but not SHR+Iso group. Melatonin intake increased Ach induced aortic NO in Wistar+Iso and SHR+Iso groups, whereas there was no effect of PUFA intake. Findings suggest that PUFA modulates plasma and melatonin aortic NO levels of isoproterenol affected rats in a strain-dependent manner., K. K. Chaudagar, C. Viczenczova, B. Szeiffova Bacova, T. Egan Benova, M. Barancik, N. Tribulova., and Obsahuje bibliografii
Using histochemical analysis (NADPH-diaphorase, Fluoro-Jade B dye and bis-benzimide 33342 Hoechst) we studied the influence of intraperitoneal administration of nicotine (NIC), kainic acid (KA) and combination of both these substances on hippocampal neurons and their changes. In experiments, 35-day-old male rats of the Wistar strain were used. Animals were pretreated with 1 mg /kg of nicotine 30 min prior to the kainic acid application (10 mg/kg). After two days, the animals were transcardially perfused with 4 % paraformaldehyde under deep thiopental anesthesia. Cryostat sections were stained to identify NADPH-diaphorase positive neurons that were then quantified in the CA1 and CA3 areas of the hippocampus, in the dorsal and ventral blades of the dentate gyrus and in the hilus of the dentate gyrus. Fluoro-Jade B positive cells were examined in the same areas in order to elucidate a possible neurodegeneration. In animals exposed only to nicotine the number of NADPH-diaphorase positive neurons in the CA3 area of the hippocampus and in the hilus of the dentate gyrus was higher than in controls. In contrast, KA administration lowered the number of NADPH-diaphorase positive cells in all studied hippocampal areas and in both blades of the dentate gyrus. Massive cell degeneration was observed in CA1 and CA3 areas of the hippocampus and in the hilus of the dentate gyrus after kainic acid administration. Animals exposed to kainic acid and pretreated with nicotine exhibited degeneration to a lesser extent and the number of NADPH-diaphorase positive cells was higher compared to rats, which were exposed to kainic acid only., V. Riljak, M. Milotová, K. Jandová, J. Pokorný, M. Langmeier., and Obsahuje bibliografii a bibliografické odkazy