The paper deals with the control of underactuated mechanical systems between equilibrium positions across the singular positions. The considered mechanical systems are in the gravity field. The goal is to find feasible trajectory connecting the equilibrium positions that can be the basis of the system control. Such trajectory can be stabilized around both equilibrium positions and due to the gravity forces the mechanical system overcomes the singular positions. This altogether constitutes the control between the equilibrium positions. The procedure is demonstrated on the different inverse pendulum mechanisms.
This paper presents a relaxed scheme for controller synthesis of continuous-time systems in the Takagi-Sugeno form, based on non-quadratic Lyapunov functions and a non-PDC control law. The relaxations here provided allow state and input dependence of the membership functions' derivatives, as well as independence on initial conditions when input constraints are needed. Moreover, the controller synthesis is attainable via linear matrix inequalities, which are efficiently solved by commercially available software.
In order to achieve a short regulation cycle, time-optimal control has been considered in the past. However, the sensitivity to errors and uncertainties, and implementation difficulties in the practical systems, have incited other research directions to meet this objective. In this paper, soft Variable Structure Control (VSC) is analyzed from the perspective of linear time-delay systems with input constraint. The desired fast convergence under a smoothly varying control signal is obtained. The stability issues originating from the non-negligible delay are addressed explicitly by incorporating a dead-time compensator, applicable to both structurally stable and unstable plants. The properties of the obtained dynamic soft VSC system are demonstrated analytically and compared with the linear and saturating control structures.