A family of subsets of a set is called a $\sigma $-topology if it is closed under arbitrary countable unions and arbitrary finite intersections. A $\sigma $-topology is perfect if any its member (open set) is a countable union of complements of open sets. In this paper perfect $\sigma $-topologies are characterized in terms of inserting lower and upper measurable functions. This improves upon and extends a similar result concerning perfect topologies. Combining this characterization with a $\sigma $-topological version of Katětov-Tong insertion theorem yields a Michael insertion theorem for normal and perfect $\sigma $-topological spaces.
One of the most celebrated results in the theory of hyperspaces says that if the Vietoris topology on the family of all nonempty closed subsets of a given space is normal, then the space is compact (Ivanova-Keesling-Velichko). The known proofs use cardinality arguments and are long. In this paper we present a short proof using known results concerning Hausdorff uniformities.