For given a graph $H$, a graphic sequence $\pi =(d_1,d_2,\ldots ,d_n)$ is said to be potentially $H$-graphic if there is a realization of $\pi $ containing $H$ as a subgraph. In this paper, we characterize the potentially $(K_5-e)$-positive graphic sequences and give two simple necessary and sufficient conditions for a positive graphic sequence $\pi $ to be potentially $K_5$-graphic, where $K_r$ is a complete graph on $r$ vertices and $K_r-e$ is a graph obtained from $K_r$ by deleting one edge. Moreover, we also give a simple necessary and sufficient condition for a positive graphic sequence $\pi $ to be potentially $K_6$-graphic.