We aimed to compare the effect of angiotensin converting enzyme (ACE) inhibitors captopril (containing thiol group) and enalapril (without thiol group) on the development of spontaneous hypertension and to analyze mechanisms of their actions, particularly effects on oxidative stress and NO production. Six-week-old SHR were divided into three groups: control, group receiving captopril (50 mg/kg/day) or enalapril (50 mg/kg/day) for 6 weeks. At the end of experiment, systolic blood pressure (SBP) increased by 41 % in controls. Both captopril and enalapril prevented blood pressure increase, however, SBP in the captopril group (121±5 mmHg) was significantly lower than that in the enalapril group (140±5 mmHg). Concentration of conjugated dienes in the aorta was significantly lower in the captopril group compared to the enalapril group. Captopril and enalapril increased NO synthase activity in the heart and aorta to the similar level. Neither captopril nor enalapril was, however, able to increase the expression of eNOS. Both ACE inhibitors increased the level of cGMP. However, cGMP level was significantly higher in the aorta of captopril group. We conclude that captopril, beside inhibition of ACE, prevented hypertension by increasing NO synthase activity and by simultaneous decrease of oxidative stress which resulted in increase of cGMP concentration., O. Pecháňová., and Obsahuje bibliografii
To investigate damaging mechanisms of chilling and salt stress to peanut (Arachis hypogaea L.) leaves, LuHua 14 was used in the present work upon exposure to chilling temperature (4°C) accompanied by high irradiance (1,200 μmol m-2 s-1) (CH), salt stress accompanied by high irradiance (1,200 μmol m-2 s-1) (SH), and high-irradiance stress (1,200 μmol m-2 s-1) at room temperature (25°C) (NH), respectively. Additionally, plants under low irradiance (100 μmol m-2 s-1) at room temperature (25°C) were used as control plants (CK). Relative to CK and NH treatments, both the maximal photochemical efficiency of PSII (Fv/Fm) and the absorbance at 820 nm decreased greatly in peanut leaves under CH and SH stress, which indicated that severe photoinhibition occurred in peanut leaves under such conditions. Initial fluorescence (F0), 1 - qP and nonphotochemical quenching (NPQ) in peanut leaves significantly increased under CH- and SH stress. Additionally, the activity of superoxide dismutase (SOD), one of the key enzymes of water-water cycle, decreased greatly, the accumulation of malondialdehyde (MDA) and membrane permeability increased. These results suggested that damages to peanut photosystems might be related to the accumulation of reactive oxygen species (ROS) induced by excess energy, and the water-water cycle could not dissipate energy efficiently under the stress of CH and SH, which caused the accumulation of ROS greatly. CH and SH had similar damaging effects on peanut photosystems, except that CH has more severe effects. All the results showed that CH- and SH stress has similar damaging site and mechanisms in peanut leaves. and L.-Q. Qin ... [et al.].
Photosynthetic light curve, chlorophyll (Chl) content, Chl fluorescence parameters, malondialdehyde (MDA) content, phosphoenolpyruvate carboxylase (PEPC) activity and reactive oxygen metabolism were studied under drought stress in two autotetraploid rice lines and corresponding diploid rice lines. Net photosynthetic rate decreased dramatically, especially under severe drought stress and under high photosynthetic active radiation in diploid rice, while it declined less under the same conditions in autotetraploid lines. Compared with the corresponding diploid lines, the Chl content, maximum photochemical efficiency of photosystem (PS) II, and actual photochemical efficiency of PSII were reduced less in autotetraploid lines. PEPC activities were higher in autotetraploid rice lines. PEPC could alleviate inhibition of photosynthesis caused by drought stress. The chromosome-doubling enhanced rice photoinhibition tolerance under drought stress. The lower MDA content and superoxide anion production rate was found in the autotetraploid rice indicating low peroxidation level of cell membranes. At the same time, the superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities were higher in autotetraploid rice lines. SOD, POD, and CAT could effectively diminish the reactive oxygen species and reduced the membrane lipid peroxidation., P.-M. Yang, Q.-C. Huang, G.-Y. Qin, S.-P. Zhao, J.-G. Zhou., and Obsahuje bibliografii
Responses of the photosynthetic electron transport system of chloroplasts to exogenous proline application were evaluated in young and mature leaves of Arabidopsis thaliana plants under optimal growth conditions. Exogenous proline application (10 mM) during the 4th week of growth increased proline accumulation in young leaves more than in mature leaves, and possibly due to its degradation producing NADPH, decreased significantly the ratio of NADP+/NADPH in both leaf types compared with controls (without proline). However, the ratio of NADP+/NADPH remained significantly higher in the young leaves, suggesting lower proline degradation which resulted in less reduced plastoquinone pool than that in the mature leaves, under both low light [130 μmol(photon) m-2 s-1] and high light [1,200 μmol(photon) m-2 s-1] treatments. The young leaves seemed to adjust nonphotochemical fluorescence quenching in order to maintain a better PSII quantum yield. We concluded that under optimal growth conditions exogenous proline results in overreduction of the plastoquinone pool and blockage of photosynthetic electron flow due to accumulation of NADPH. We suggest that optimum concentrations of proline are required for optimal PSII photochemistry., I. Sperdouli, M. Moustakas., and Obsahuje seznam literatury
Despite the demonstrated exercise -induced increase in reactive oxygen species (ROS) production, growing epidemiological evidence indicates that habitual, moderate physical activity reduces the incidence of several oxidative stress-based diseases. This apparent paradox can be explained taking into account that ROS produced during repeated ex ercise bouts may act as mild stressors able to trigger physiological and biomolecular hormetic responses through a number of redox-sensitive transcription pathways. Unfortunately, much more limited information is available from general population-based research, which could better reflect the condition of common people interested in achieving and maintaining good fitness levels. The present work aimed at investigatin g whether and how exercise-related habits in non-professional regular runners (n=33) can affect the systemic anti-oxidative capacity, and the resting serum levels of typical lipid peroxidation-related by-products and oxidatively- damaged proteins, in comparison with untrained sedentary individuals (n=25). We also anal yzed in both groups the redox response elicited by a modified Bruce-based maximal exercise test on the same parameters. Our findings indicated that long- term regular and moderate practice of aerobic physical activity can increase antioxidant defense systems, lower the resting protein oxidation processes and reduce the immediate up- regulation of lipid-targeting oxidative stress in response to an acute bout of exercise., S. Falone, A. Mirabilio, A. Pennelli, M. Cacchio, A. Di Baldassarre, S. Gallina, A. Passerini, F. Amicarelli., and Obsahuje bibliografii
Maize (Zea mays) seedlings were exposed for 6 h to strong irradiance (1 000 μmol m-1 s-1 of PPFD) at 5, 12, 17, or 25 °C, followed by an exposure to the darkness for 6 h at 22 °C. Leaf chlorophyll fluorescence, net photosynthetic rate (PN), and the amount of superoxide radicals (O2-⋅) in relation to chilling-induced photoinhibition were investigated. During the photophase, a good correlation (r=-0.879) was observed between ΦPS2 (relative quantum efficiency of PS2 electron transport) and the amount of O2-⋅. Treatment with exogenous O2-⋅ reduced the PN and ΦPS2 as the chilling stress did, that was inhibited by specific scavenger of O2-⋅. Hence chilling-induced photoinhibition might be due to the production of O2-⋅. In contrast, in the dark period, PN and ΦPS2 of the seedlings treated with the exogenous O2-⋅ were enhanced, but they were inhibited by the specific scavenger of O2-⋅, showing the photoprotective role of O2-⋅ in the recovery phase. Furthermore, in terms of the effect of exogenous O2-⋅ on the xanthophyll cycle, the O2-⋅ production suggested a promotion effect for the de-epoxidation of violaxanthin during the photophase, the epoxidation of zeaxanthin at the dark stage, and the increase of the xanthophyll pool both in the photophase and dark phase, resulting in an enhancement of the ability of non-photochemical quenching to avoid or alleviate the damage to photosynthetic apparatus. and D. Ke, G. Sun, Y. Jiang.
Warming winter and atmospheric nitrogen (N) deposition are expected to have effects on net primary production (NPP) of Chinese fir (Cunninghamia lanceolata) plantation and implications for plantation carbon sequestration. The effects of nongrowing-season warming on plant morphological and physiological traits were investigated in a greenhouse experiment with two-year-old C. lanceolata seedlings. Elevated temperature (ET) during the nongrowing season significantly increased the net photosynthetic characteristics. The strongest effects occurred during warming period from 1 December 2014 to 1 February 2015 (W1). Moreover, the carbohydrate concentration was elevated due to the warming during W1, but it declined during four months of the warming (from 1 December 2014 to 1 April 2015, W2). The seedlings kept under N deposition (CN) showed a positive effect in all the above-mentioned parameters except δ13C. Significant interactions between ET and N deposition were observed in most parameters tested. At the end of the experiment (W2), the seedlings exposed to a combined ET and N deposition treatment exhibited the highest carbon contents. Our results showed that N deposition might ameliorate the negative effects of the winter warming on the carbon content., L. Yu, T. F. Dong, Y. B. Lu, M. Y. Song, B. L. Duan., and Obsahuje bibliografii
The rubber tree (Hevea brasiliensis) is an important tropical crop with a high economic value that has been successfully cultivated in Xishuangbanna, China. Xishuangbanna has a long dry season (November-February) with cold nights and frequent fog events. Thus, it is important to select chilling-tolerant cultivars in order to understand better the role of fog in protecting rubber tree from chilling-induced photodamage. In this study, we examined the photosynthetic responses of six rubber tree cultivars (Lan 873, Yunyan 77-2, Yunyan 77-4, GT1, Reken 523, and Reyan 733-97) to night-chilling stress (0, 5, and 10°C) and two different irradiances (100 and 50% of full sunlight). Our results showed that all six cultivars could withstand nights at 10°C for three days, while night chilling at 0 and 5°C impaired photosynthesis, which was indicated by photoinhibition, decrease of soluble protein content, and accumulation of malondialdehyde. Reken 523 and Reyan 733-97 were more sensitive to night chilling than other cultivars. Low irradiance (50% of full sunlight) after the chilling treatment apparently mitigated the effect of night-chilling stress. It indicates that frequent fog events after cold nights might greatly contribute to the success of rubber tree cultivation in Xishuangbanna., Y.-H. Tian, H.-F. Yuan, J. Xie, J.-W. Deng, X.-S. Dao, Y.-L. Zheng., and Seznam literatury
Calligonum caput-medusae is known to grow well when irrigated with water containing NaCl. The aim of this study was to investigate ecophysiological responses of C. caput-medusae to different NaCl concentrations. In our study, we examined the effect of 0, 50, 100, 200, and 400 mM NaCl. Our results demonstrated that maximum seedling growth occurred at 50 mM NaCl. Photosynthetic parameters, such as the photosynthetic pigment content and gas exchange parameters, correlated with growth response. High salinity (≥ 100 mM NaCl) resulted in a significant reduction of the plant growth. Similarly, marked declines in the pigment content, maximal efficiency of PSII photochemistry, net photosynthetic rate, transpiration rate, and stomatal conductance were also detected. However, intercellular CO2 concentration showed a biphasic response, decreasing with water containing less than 200 mM NaCl and increasing with NaCl concentration up to 400 mM. Water-use efficiency and intrinsic water-use efficiency exhibited the opposite response. The reduction of photosynthesis at the high NaCl concentration could be caused by nonstomatal factors. High salinity led also to a decrease in the relative water content and water potential. Correspondingly, an accumulation of soluble sugars and proline was also observed. Na+ and
Cl- concentrations increased in all tissues and K+ concentrations were maintained high during exposure to NaCl compared with the control. High salinity caused oxidative stress, which was evidenced by high malondialdehyde and hydrogen peroxide contents. In order to cope with oxidative stress, the activity of antioxidative enzymes increased to maximum after 50 mM NaCl treatment. The data reported in this study indicate that C. caput-medusae can be utilized in mild salinity-prone environments., Y. Lu, J.-Q. Lei, F.-J. Zeng, B. Zhang, G.-J. Liu, B. Liu, X.-Y. Li., and Obsahuje bibliografii
Resveratrol, which is a polyphenol present in red wines and vegetables included in human diets, exerts many biological effects. The aim of the present study was to investigate its effect on some activities of polymorphonuclear leukocytes, particularly the generation of superoxide anion (O2-) in whole blood, hypochlorous acid (HOCl) and nitric oxide (NO) production by isolated cells, and chemotaxis. Resveratrol showed significant dose-dependent inhibitory effect on all these activities. In particular, it inhibited O2- generation in stimulated but not in resting neutrophils, decreased HOCl much more than O2- production indicating an effect on myeloperoxidase secretion since HOCl production is directly and proportionally dependent on O2- generation and reduced cell motility. The small dose of resveratrol (4.38 nM) used is attainable with a diet including red wine and vegetables confirming its protective role against some pathological processes such as inflammation, coronary heart disease, and cancer., A. Cavallaro, T. Ainis, C. Bottari, V. Fimiani., and Obsahuje bibliografii